Qiang Xie , YuCheng Chen , Zhangrui Wu , Haiyou Peng , Xiang Fu , Yuxin Ban
{"title":"Investigation of morphological features and mechanical behavior of jointed limestone subjected to wet-dry cycles and cyclic shear in drawdown areas of the Three Gorges Reservoir","authors":"Qiang Xie , YuCheng Chen , Zhangrui Wu , Haiyou Peng , Xiang Fu , Yuxin Ban","doi":"10.1016/j.enggeo.2025.107990","DOIUrl":"10.1016/j.enggeo.2025.107990","url":null,"abstract":"<div><div>Reservoir drawdown induces cyclic water level fluctuations, exposing geomaterials in drawdown areas to repetitive wet-dry cycles and cyclic shearing forces. Understanding the deterioration mechanisms of geomaterials under these conditions is crucial for ensuring the long-term stability of the geomaterials in drawdown areas. This study systematically explores the deterioration mechanisms of jointed limestone from the Three Gorges Reservoir region under these dual effects. Employing three-dimensional white light scanning and EDS (energy dispersive spectroscopy) technology, the morphological and chemical evolution of rock joints was quantitatively characterized. The modified JRC-JCS (joint roughness coefficient-joint wall compressive strength) model was utilized to predict shear strength. The findings reveal that with the increase of wet-dry cycles and cyclic shears times, the surface of joints becomes progressively smoother, and the deterioration rate of shear strength gradually decreases. Cyclic shear primarily damages micro-protrusions, while wet-dry cycling affects both protruding and recessed areas through the dissolution of soluble mineral crystals. Compared with other typical model, the modified JRC-JCS model demonstrated better accuracy in predicting shear strength. The findings reveal the deterioration mechanisms of geomaterials in drawdown areas, providing essential insights for assessing the long-term stability of jointed rock mass in these regions.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107990"},"PeriodicalIF":6.9,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient probabilistic tunning of large geological model (LGM) for underground digital twin","authors":"Wei Yan , Caiyan Yang , Ping Shen , Wan-Huan Zhou","doi":"10.1016/j.enggeo.2025.107996","DOIUrl":"10.1016/j.enggeo.2025.107996","url":null,"abstract":"<div><div>Urban large geological models (LGMs) are essential for characterizing subsurface conditions for underground digital twins, facilitating informed decision-making. Incorporating uncertainty and efficient tuning methods for LGMs are indispensable technologies for enhancing reliability with dynamic geotechnical databases, yet these aspects are not fully addressed in current studies. This research proposes a novel framework to develop the first probabilistic tunable LGM, integrating local stratification knowledge and real borehole measurements. Local stratifications are collected from experienced engineering geologists and interpreted as virtual boreholes. These virtual boreholes are inputted into the stratum-informed random field-based method (SI-RFB) to develop geological prior for the LGM. Then, the spatial sequential Bayesian updating (SSBU) algorithm is utilized to partially tune the LGM with on-site borehole data. The influence zones of updating are mathematically predetermined based on project-specific borehole spacing. The effectiveness of the proposed framework is demonstrated through a simulated 3D case referencing a site in Macao. Furthermore, the proposed model is applied to develop a tunable urban LGM for the landfill region in the Macao Peninsula covering 6.4 km<sup>2</sup>. The results emphasize the framework's ability to effectively tune the LGM, enhancing details and reducing uncertainty. Importantly, the method is computationally efficient, accounting only for up to 0.3 % of the conventional reconstruction cost for the same area, thereby providing an economically viable solution for underground digital twins.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107996"},"PeriodicalIF":6.9,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Forte , Melania De Falco , Antonio Santo , Dipendra Gautam , Nicoletta Santangelo
{"title":"Flash flood impacts and vulnerability mapping at catchment scale: Insights from southern Apennines","authors":"Giovanni Forte , Melania De Falco , Antonio Santo , Dipendra Gautam , Nicoletta Santangelo","doi":"10.1016/j.enggeo.2025.107988","DOIUrl":"10.1016/j.enggeo.2025.107988","url":null,"abstract":"<div><div>Flash floods are frequent natural hazard events in many parts of the world. Generally, they occur in small catchments drained by torrential streams that feed alluvial fans or fan deltas. In the Mediterranean region, these phenomena are particularly common during the spring and autumn seasons, often causing significant damage to buildings, infrastructures, agriculture, and sometimes resulting in fatalities and injuries. To better understand and manage the potential consequences of these events on physical systems, probabilistic damage quantification is essential. Fragility functions, which describe the probability of reaching or exceeding a specific damage state based on an intensity measure, are valuable tools for assessing damage conditioned on the intensity of a natural hazard. While such curves are widely reported and extensively applied, there is a notable lack of interdisciplinary methodologies for their development and integration into broader risk management frameworks. This gap often leaves initiatives such as flood insurance premium planning, probabilistic loss estimation, and flood risk management reliant on uninformed or generic tools.</div><div>This study proposes an interdisciplinary approach to developing flood fragility functions using post-event flash flood damage data. The event that occurred on 14–15 October 2015 in Solopaca – Paupisi area (Benevento, Italy) is adopted as the case study. The reactivation of alluvial fan lobes is analyzed together with the recorded rainfalls. It is based on the processing of post-event field data acquired with classical and remote sensing technologies such as UAV imagery. Impact mapping is then conducted to depict the spatial extent of the flash flood. The event is then characterized in terms of inundation depth and thickness of mobilized material and grain size distribution. The area of the event and the thickness of the deposits are considered to estimate the transported solid volumes. Finally, the damage incurred to buildings and respective inundation depth is assembled to construct flash flood fragility functions. The outcomes of this study can be used in numerical flow model calibration and validation as well as flash flood risk assessment and management initiatives. The fragility functions developed in this study can serve as a tool for loss assessment, resilient construction prioritization, and insurance premium planning. The interdisciplinary approach developed and implemented in this study will be insightful to many other regions across the world in terms of flash flood mitigation planning.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107988"},"PeriodicalIF":6.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xi Yang , Xiao-Wei Jiang , Kai-Gao Ouyang , Tao-Tao Ji , Yi-Fan Gao , Xiao-Hong Geng , Ran Niu , Ji-Zhong Huang , Hong-Bing Yan , Li Wan
{"title":"The mechanisms of salt weathering responsible for sandstone deterioration in the Yungang Grottoes, China","authors":"Xi Yang , Xiao-Wei Jiang , Kai-Gao Ouyang , Tao-Tao Ji , Yi-Fan Gao , Xiao-Hong Geng , Ran Niu , Ji-Zhong Huang , Hong-Bing Yan , Li Wan","doi":"10.1016/j.enggeo.2025.107989","DOIUrl":"10.1016/j.enggeo.2025.107989","url":null,"abstract":"<div><div>Salt weathering significantly contributes to the deterioration of porous building materials, particularly in stone cultural heritage. However, the origins of salts and water responsible for salt weathering remain poorly understood. This study focuses on the Yungang Grottoes, known for severe salt weathering. We collected 15 salt-bearing rock samples from 8 caves to determine the types of salts, 16 rock powder samples from two horizontal boreholes located in the interior and exterior walls of a seriously deteriorated cave to compare dissolved ions, and 7 rock samples from a horizontal borehole to determine the mineralogy. We found that epsomite (MgSO<sub>4</sub>·7H<sub>2</sub>O) is the dominant salt precipitated on the walls of many caves. The source of SO<sub>4</sub><sup>2−</sup> is historical air pollution, while the source of Mg<sup>2+</sup> is the weathering of ankerite and biotite. The comparable concentrations of dissolved K<sup>+</sup> and Li<sup>+</sup> in the interior and exterior walls indicate a similar degree of chemical weathering; however, the Ca<sup>2+</sup> concentration in the interior wall is significantly lower, indicating processes that have removed Ca. PHREEQC simulation of the precipitation sequence of salts suggests that CaSO<sub>4</sub> may have already crystallized historically, which is supported by data reported in the literature. By monitoring vapor concentrations and wall temperatures, we infer that the interior walls are more prone to retain rock moisture, which contributes to both chemical and salt weathering, ultimately accelerating the deterioration of sandstone. These findings provide a scientific basis for the preservation of the grottoes and the mitigation of salt weathering.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107989"},"PeriodicalIF":6.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143548232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Time-series InSAR landslide three-dimensional deformation prediction method considering meteorological time-delay effects","authors":"Jichao Lv, Rui Zhang, Xin Bao, Renzhe Wu, Ruikai Hong, Xu He, Guoxiang Liu","doi":"10.1016/j.enggeo.2025.107986","DOIUrl":"10.1016/j.enggeo.2025.107986","url":null,"abstract":"<div><div>Landslide deformation prediction is a critical component of disaster early warning systems and significantly contributes to disaster prevention and mitigation. However, the high cost of traditional deformation monitoring equipment limits its extensive application across large areas. Furthermore, existing landslide deformation prediction methods often overlook the nonlinear influence of meteorological conditions. This study introduces a novel framework for predicting three-dimensional landslide deformations by employing time-series interferometric synthetic aperture radar (InSAR), which accounts for the time-delay effects of meteorological factors. First, the framework leverages ascending and descending orbit time-series InSAR technology to generate three-dimensional deformation data for landslides. Subsequently, the deformation data were decomposed into trend and periodic components using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method. An autoregressive integrated moving average (ARIMA) model was developed for trend prediction, and an improved unscented Kalman filtering (UKF) model was developed for the periodic component. The prediction of the periodic component uses a second-order Taylor series and adaptive adjustments of observation and process noise covariance matrices to create a UKF deformation prediction model that incorporates meteorological time-delay effects. The method's effectiveness was validated through experiments on the Xiongba and Sela landslides in Gongjue County, Tibet. Results demonstrated that ascending and descending orbit time-series InSAR technology can accurately detect three-dimensional deformation, revealing maximum deformation rates of 43.81 cm/year for the Xiongba landslide and 31.83 cm/year for the Sela landslide. For the trend component, the ARIMA model achieved a correlation coefficient (R<sup>2</sup>) exceeding 0.9 and root mean square error (RMSE) below 1.0 cm across multiple monitoring points. Regarding the periodic component, the framework's reliability was first confirmed through simulation experiments. Further analyses of the Xiongba and Sela landslides revealed that rainfall and temperature exhibit distinct time-delay effects on deformation. Incorporating meteorological data into the improved UKF model significantly enhanced the prediction accuracy, yielding R<sup>2</sup> values between 0.8 and 0.9, with the RMSE and mean square error (MAE) outperforming those of the long short-term memory (LSTM) and recurrent neural network (RNN) comparison models. Overall, the proposed framework offers vital technical support for risk prediction and early warning of large-scale landslide disasters, facilitating more accurate landslide forecasting.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107986"},"PeriodicalIF":6.9,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143593576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact of overburden pressure on the thermo-hydro-mechanical behavior of silty sand during a freeze-thaw cycle in the context of Artificial Ground Freezing","authors":"Zeina Joudieh , Olivier Cuisinier , Adel Abdallah , Farimah Masrouri","doi":"10.1016/j.enggeo.2025.107992","DOIUrl":"10.1016/j.enggeo.2025.107992","url":null,"abstract":"<div><div>Underground excavations often involve soft, weathered soils and rocky formations that are mechanically unstable, necessitating effective stabilization methods. Artificial ground freezing (AGF) has emerged as a viable option, offering enhanced mechanical strength and reduced permeability. However, challenges such as frost heave and thaw-induced displacements, especially in urban settings, remain critical concerns. The influence of overburden pressure on soil freezing and deformations is complex, highly coupled, and not fully understood.</div><div>In this context, freeze-thaw (FT) tests were conducted on silty sandy soil under a wide range of applied vertical stress, varying from 10 to 4000 kPa, using a unique, modified temperature-controlled oedometer. Results reveal a strong inverse correlation between applied stress and generated frost heave. Higher stresses delay the onset of freezing, alter phase change, and reduce heave rates. The study also highlights the densification of the normally consolidated fine-grained soil and the net volume reduction by the end of the FT cycle. Reloading the thawed soil after an FT cycle under low stresses renders the soil softer and more susceptible to significant settlements, highlighting the detrimental impact of the FT cycle. In contrast, post-thaw loading after an FT cycle under high stresses results in a marked shift in the slope of the initial compression curve, reflecting a significant increase in stiffness, similar to an overconsolidation effect. This indicates a fundamental change in the soil structure that reduces its compressibility after the FT cycle under high applied stress. The findings highlight the complex interactions between temperature, applied stress, and soil response to the FT cycle. These interactions are key to understanding frost heave and thaw settlements in urban environments with overburden pressure. The study offers insights to help engineers better predict ground deformations and optimize AGF design in various geological contexts.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107992"},"PeriodicalIF":6.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143654655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influence of spatial borehole density on estimation of geostatistical properties and construction of heterogeneous hydrogeological models","authors":"Duc-Huy Tran , Shih-Jung Wang , Jia-Jyun Dong","doi":"10.1016/j.enggeo.2025.107991","DOIUrl":"10.1016/j.enggeo.2025.107991","url":null,"abstract":"<div><div>The distribution of hydrogeological materials affects geotechnical engineering, groundwater flow and transport, and geomechanics. The number and spatial distribution of boreholes influence the construction of hydrogeological models. This study examined the impact of spatial borehole density on the geostatistical properties and construction of three-dimensional heterogeneous hydrogeological models (HHMs). A dataset of 437 boreholes was analyzed, where a true case and three scenarios with varying borehole densities were used. To maintain data consistency, a uniform random selection method is proposed to reduce the borehole density. Spatial characteristics were assessed using a one-dimensional continuous-lag Markov chain and the spMC package. Conditional realizations of HHMs (generated using 40 simulations) revealed that volumetric proportions of a material remained stable across densities, indicating that the proposed selection strategy is effective. Geological continuity in the alluvial fan was estimated to be longer in the strike direction than the dip direction, which is inconsistent with traditional assumptions. Higher borehole density produced more heterogeneous models, whereas lower borehole density produced a more continuous pattern. Deep boreholes were found to be important for HHM construction. An uncertainty analysis using the coefficient of variation (CV) shows that increasing borehole density reduces model uncertainty, with the 90<sup>th</sup> percentile CV for clay thickness reaching 0.309. This highlights the importance of spatial borehole density (two-dimensional density and volumetric density) in influencing material distribution and reducing uncertainty in stochastic HHMs. These findings provide insights for enhancing the reliability of HHMs and have implications for groundwater management, land subsidence mitigation, engineering geology, and environmental assessments.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107991"},"PeriodicalIF":6.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D modelling of rock mass heterogeneities in unsaturated karst using geophysics, clustering and geostatistics","authors":"Habiba Lharti , Colette Sirieix , Antoine Marache , Joëlle Riss , Fabien Salmon , Cécile Verdet , Delphine Lacanette","doi":"10.1016/j.enggeo.2025.107994","DOIUrl":"10.1016/j.enggeo.2025.107994","url":null,"abstract":"<div><div>Conserving an underground heritage site in a karst environment poses significant challenges because of the complexity of the physical phenomena involved. The deterioration of cave walls is mainly caused by condensation and infiltration, which originates from the thermal behaviour of the cave and the surrounding rock mass. This phenomenon is difficult to describe because it depends on the heterogeneity and water content of the unsaturated rock mass. However, it is clear that the conservation of cave art is a matter of concern for all caves worldwide. The purpose of this study is to analyse the heterogeneities surrounding Lascaux Cave and identify those which are water-saturated (during the wet season) that could significantly influence the cave thermally. The rock mass was characterised using the non-destructive 2D electrical resistivity tomography (ERT) method. Before kriging the ERT data, Hierarchical Agglomerative Clustering (HAC) was performed on the dataset. This classification provides class boundaries for categorising the kriging-estimated resistivities. The results of this study significantly improve our understanding of rock mass from geological and hydrogeological perspectives. The creation of a 3D model helped to identify four areas of lower resistivity (water storage reservoirs), indicating the possible presence of water as the rock mass was partially saturated. Those water storage reservoirs coincide with the water flows recorded during wet periods inside the cave and are associated with known geological fractures. Moreover, identifying the different materials surrounding the cave and the saturated areas in the 3D model allows us to understand the deviations in the temperature measurements in different parts of the cave and will improve the accuracy of the heat transfer simulations.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107994"},"PeriodicalIF":6.9,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143532980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Wei, Xuanmei Fan, Mingyao Xia, Danny Love Wamba Djukem, Shaojian Qi, Xinxin Zhang
{"title":"Hanging wall effects on cross-fault slope failures: Shaking table experiment insights","authors":"Tao Wei, Xuanmei Fan, Mingyao Xia, Danny Love Wamba Djukem, Shaojian Qi, Xinxin Zhang","doi":"10.1016/j.enggeo.2025.107985","DOIUrl":"10.1016/j.enggeo.2025.107985","url":null,"abstract":"<div><div>Earthquake-triggered landslides are prone to occur on the hanging wall of faults, yet the failure mechanism of co-seismic landslides affected by reverse faulting remains poorly understood. In this study, we explore the dynamic response and failure mechanism of cross-fault slopes by conducting reverse fault physical modeling on large-scale shaking table model testing. A novel movable model box with a sliding bottom plate and an air cushion is used to simulate the reverse faulting of the horizontal layered slope models with fault dip angles of 30° and 50°. We analyze the effect of different reverse fault angles on the dynamic response and failure patterns, using various seismic waves, Hilbert-Huang transform (HHT), and particle image velocimetry (PIV). The results indicate that the dip angle of the reverse fault dislocation is crucial in influencing the dynamic response of the cross-fault slope. The 30° model is more sensitive to frequency changes and is prone to resonance at 24 Hz, while the 50° model produces stronger dynamic response to high amplitude seismic waves. Reverse fault dislocation amplifies the dynamic response and Hilbert energy at the hanging wall, with a larger amplification coefficient observed at a 30° dip angle. Slope models with different dip angles of the reverse fault produce distinct Hilbert energy distributions, resulting in two typical failure patterns. A “tension-shear” failure pattern, characterized by a shallow sliding surface, occurs in the 50° dip angle model, while a “tension-ejection” failure pattern with a vertical tensile sliding surface occurs in the 30° dip angle model. Our results provide important insights into the behavior of cross-fault slopes during seismic events, and provide guidance for better understanding and managing hazards associated with cross-fault slopes.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"350 ","pages":"Article 107985"},"PeriodicalIF":6.9,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143534781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaosong Tang , Jialin Liu , Feng Yang , Xu Qiao , Tingyang Fu , Suping Peng
{"title":"Research on the penetration performance of rotary ground-penetrating radar in detecting coal-rock interfaces of roofs based on numerical simulation and actual exploration","authors":"Xiaosong Tang , Jialin Liu , Feng Yang , Xu Qiao , Tingyang Fu , Suping Peng","doi":"10.1016/j.enggeo.2025.107978","DOIUrl":"10.1016/j.enggeo.2025.107978","url":null,"abstract":"<div><div>Determining the precise boundary of coal seams is a significant challenge in the field of intelligent coal mining. Traditional drilling methods have proven inefficient in detecting the coal-rock interface of the roof, failing to meet the standards required for smart mining operations. To overcome this limitation, this paper proposes a novel rotating ground-penetrating radar (GPR) observation method for detecting the coal-rock interface,the GPR will be installed within 2 m of the air layer thickness beneath the coal roof in the coal working face, enabling omnidirectional 3D rotational detection. To study the penetration characteristics of the rotating GPR in the coal-rock interface of the roof, a refined numerical model was established. The model incorporates four different gangue content levels: 0 %, 0.1 %, 0.5 %, and 5 %, and includes four detection targets: “<em>Coal-Immediate Roof</em>”,“<em>Immediate Roof-Main Roof</em>”,<em>cavity</em>, and “<em>Air-Coal</em>”. The numerical simulation orthogonal experiment investigated the waveform characteristics, energy spectrum variations, and imaging features of GPR antennae at three different central frequencies: 50 MHz, 100 MHz, and 200 MHz. This analysis aids in selecting the appropriate detection frequency based on observed patterns in energy spectrum changes and imaging characteristics. Additionally, the paper analyzes the influence of the coal wall, floor, and random surfaces (“<em>Immediate Roof-Main Roof</em>”) on target recognition, comparing the identification effects of different acquisition methods and modeling approaches. This study provides new insights into non-destructive detection of coal-rock interfaces in mine roofs by validating the advantages of the proposed detection method and the feasibility of frequency selection with measured examples.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"349 ","pages":"Article 107978"},"PeriodicalIF":6.9,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143479632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}