{"title":"Commentary on Jaillard, E., (2022): Late Cretaceous-Paleogene orogenic build-up of the Ecuadorian Andes: Review and discussion","authors":"Antenor M. Alemán","doi":"10.1016/j.earscirev.2024.104939","DOIUrl":"10.1016/j.earscirev.2024.104939","url":null,"abstract":"<div><div>Although Jaillard's (2022) paper denotes the first attempt to propose a model for the orogeny build-up of the Ecuadorian Andes, it is based on endorsing the poorly constrained and uncertain Caribbean Colombia Oceanic Plateau (CCOP) from the Coastal Ranges (CR) to the Western Cordillera (WC). This model is inconsistent with the crustal thickness variation confirmed by seismic tomography profiles and Moho map (Araujo et al., 2021), unreliable REE chondrite-normalized flat patterns (Kerr, 2014), absent of HIMU Pb isotope anomaly and lack of W, He or Ne isotope information indicative of primordial mantle. Along the Coastal Ranges, Jaillard discusses the NE-oriented San Lorenzo Arc (SLA) within the context of a back-arc basin, incorporating the Chongón Colonche High (CCH) as a remnant arc orthogonal to the margin since its emplacement. Contrarily, he overlooks the widespread Cretaceous olistolith outcrops representing the cryptic and vanished Paleocene suture zone, unlike the undeformed Santa Elena Formation. The occurrence of CR lower continental crust, inferred from lower than 7 Km/s <em>sec</em> V<sub>p</sub> velocity, decisively challenges the CCOP paradigm. To the east, while Jaillard describes west-vergent contractional deformation and the prowedge foredeep flysch, he geologically thickens the Western Cordillera by rooting thrusting near the crustal-mantle boundary, including the slender Guaranda Terrane (Totoras amphibolite). This is inconsistent with the 85 Ma crystallization age of HT metamorphism predating the collision event, further questioning the CCOP model. Additionally, Jaillard disregards the Pallatanga suture melange and the adakite Pujilí Granite obstructing subduction, which shifted westward post-collision, forming the Rio Cala intraoceanic arc synchronous with flysch foredeep deposition (Vallejo, 2007) and providing the stresses for contractional deformation. Along the foreland basin, Jaillard's distortion from lithostratigraphic to chronostratigraphic isopach maps impedes recognition of the molasse source, provenance, and deposition, coeval with the EC development. The Abitagua Granite, adjacent to the giant Pungarayacu heavy oil field, necessitates continuity of Cretaceous source rocks under the EC, also functioning as a detachment. The high gravitational potential energy achieved during strong collision dissipates through extensional gravitational collapse, modulating eastward as toe-thrust imbrication and utilizing the Cretaceous detachment to form the Eastern Cordillera retrowedge concurrently with WC contractional deformation, resulting in a bivergent fold and thrust belt.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104939"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142651417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marc Calvet , Yanni Gunnell , Magali Delmas , Régis Braucher , Stéphane Jaillet , Philipp Häuselmann , Romain Delunel , Patrick Sorriaux , Pierre G. Valla , Philippe Audra
{"title":"Valley incision chronologies from alluvium-filled cave systems","authors":"Marc Calvet , Yanni Gunnell , Magali Delmas , Régis Braucher , Stéphane Jaillet , Philipp Häuselmann , Romain Delunel , Patrick Sorriaux , Pierre G. Valla , Philippe Audra","doi":"10.1016/j.earscirev.2024.104963","DOIUrl":"10.1016/j.earscirev.2024.104963","url":null,"abstract":"<div><div>This review explores the potential for establishing valley incision chronologies from alluvium-filled cave systems, and covers a total of 30 case studies since 1997. Caves in limestone develop very fast (∼10<sup>4</sup> years) when conditions for bedrock solution are optimal, and many contain alluvium deposited by allogenic sinking streams, preserving the sediment thereafter for millions of years. Cave networks display a vertical succession of sub-horizontal passages which indicate past positions of the water table, with the stream in- and outlet caves indicating the former elevation of the adjacent valley floor. Abandoned cave levels are expected to multiply as valley incision increases local relief (descending speleogenesis), but sediment aggradation or glacier ice accumulation may also raise the local base level and flood older caves or generate new ones (ascending speleogenesis). Establishing the age of alluvial sediment hosted by caves relies on burial dating of quartz-rich clasts using two terrestrial cosmogenic nuclides (TCNs) – commonly <sup>26</sup>Al and <sup>10</sup>Be – measured in the same sample. Systematic examination of age–elevation data patterns in the existing literature reveals situations ranging from intuitively consistent valley incision histories to counter-intuitive age inversions and other anomalies. Here those anomalies are analyzed and classified in order to establish the extent to which the corresponding inconsistencies are avoidable, thereby providing a methodical catalogue of foreseeable difficulties and pitfalls. Three domains of uncertainty are emphasized. The first relates to karst processes: cave network geometry, cave passage response to vadose and phreatic processes, and diachronous links between cavity age and sediment. The multiple pathways of speleogenesis are reviewed. They highlight ambiguities behind the concept of ‘cave level’, which, as a proxy for base-level paleoelevations, may be less precise than subaerial information provided by fluvial fill or strath terraces. The second source of uncertainty lies in the chronological information provided by the alluvium. Sediment dynamics in subterranean karst generate complicated stratigraphic configurations, with opportunities for postdepositional sediment reworking within or between cave levels. Furthermore, a TCN burial age is valid for a population of quartz grains but not necessarily for the entire stratigraphic sequence containing them nor for the cave that contains it. The third source of uncertainty lies in the burial dating method itself, because <sup>26</sup>Al and <sup>10</sup>Be nuclide inventories cannot unequivocally document whether older burial events might have occurred prior to final burial in the cave. The review recommends that (i) sampling strategies should be contingent on a diagnosis of speleogens and speleothems, and on a detailed sedimentological and stratigraphic analysis of the alluvial fills; (ii) dating should focus on indi","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104963"},"PeriodicalIF":10.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matías Reolid , Wolfgang Ruebsam , Jesús Reolid , Michael J. Benton
{"title":"Impact of early Toarcian climatic changes on marine reptiles: Extinction and recovery","authors":"Matías Reolid , Wolfgang Ruebsam , Jesús Reolid , Michael J. Benton","doi":"10.1016/j.earscirev.2024.104965","DOIUrl":"10.1016/j.earscirev.2024.104965","url":null,"abstract":"<div><div>Environmental changes governed the diversity of marine ecosystems and the evolution of marine reptiles during the Jurassic. Abrupt climatic changes, mainly cooling, produced crises in marine ecosystems including marine reptiles, but global warming events at the Pliensbachian/Toarcian boundary and the early Toarcian Jenkyns Event led to a second order mass extinction. The Jenkyns Event coincides with exceptional preservation of marine reptiles in black shales, so widespread extinctions are masked to some extent by increases in specimens and diversity in the Lagerstätten. Marine reptile diversity responded to this biotic crisis; in the early Toarcian, stenopterygid ichthyosaurs and marine crocodylomorphs (thalattosuchians) diversified whereas some groups that survived the Jenkyns Event disappeared during the hyperthermal conditions of the middle and late Toarcian, including ichthyosaurs (leptonectids, temnodontosaurids, baso-parvipelvians), and sauropterygians (plesiosaurids, microcleidids).</div><div>After the crisis, Aalenian climates were cold and the sea-level low with a poor record of marine reptiles. The diversity of marine ecosystems increased from the early Bajocian with a turnover in ichthyosaurs (Early Jurassic ichthyosaurs were replaced by ophthalmosaurids), sauropterygians diversified and increased in size (mainly pliosaurids and cryptocleidids), and pelagosaurid thalattosuchians disappeared at the same time that machimosaurids diversified and the Metriorhynchidae appeared. Marine reptiles reached a new maximum of diversity during the Callovian, but the Callovian/Oxfordian transition was a time of climatic cooling and sea-level fall that negatively impacted on marine ecosystems, including the extinction of rhomaleosaurids. From the middle Oxfordian, the development of large epeiric platforms and increase of temperature favoured the diversification of marine ecosystems, included marine reptiles. During the Late Jurassic, ophthalmosaurids, pliosaurids, cryptocleidids, and metriorhynchids dominated, and marine turtles diversified in coastal environments (eurysternids) and open carbonate platforms (plesiochelyids and thalassemydids).</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"259 ","pages":"Article 104965"},"PeriodicalIF":10.8,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Junjie Jia , Jennifer A.J. Dungait , Guirui Yu , Tao Cui , Yang Gao
{"title":"Nutrient enrichment and climate warming drive carbon production of global lake ecosystems","authors":"Junjie Jia , Jennifer A.J. Dungait , Guirui Yu , Tao Cui , Yang Gao","doi":"10.1016/j.earscirev.2024.104968","DOIUrl":"10.1016/j.earscirev.2024.104968","url":null,"abstract":"<div><div>Underestimating the magnitude of global lake carbon (C) production undermines the evaluation of the terrestrial ecosystem's C sink, which is key to achieving global C balance. Quantifying the potential response of lake net ecosystem productivity (NEP) and associated C production capacity to human activities is critical for evaluating the Earth's C balance. Here, we reveal global spatiotemporal dynamics of lake C production over 20 years across different continents and climate zones, highlighting the role of anthropogenic activity as a driving mechanism. We estimated lake C production using phytoplankton primary productivity from the surface to the estimated euphotic depth (PP<sub>eu</sub>) based on chlorophyll-<em>a</em> (Chl-<em>a</em>) content. Economic development has significantly contributed to increases in global lake temperatures and total phosphorus concentrations. This has stimulated increases in annual lake C production, rising from 1.53 Pg C yr<sup>−1</sup> in the 2000s to 1.95 Pg C yr<sup>−1</sup> in the 2010s. Concurrently, lakes with higher total phosphorus (TP) concentrations (≥ 0.6 mg L<sup>−1</sup>) exhibited significantly greater PP<sub>eu</sub> values of 3.16 g C m<sup>−2</sup> d<sup>−1</sup>, compared to lakes with lower TP concentrations (≤ 0.1 mg L<sup>−1</sup>), which showed 1.50 g C m<sup>−2</sup> d<sup>−1</sup>. Although lake water TP concentrations can reach up to 1 mg L<sup>−1</sup>, the critical TP concentration (TP<sub>c</sub>) at which global lake PP<sub>eu</sub> peaks at 4 to 6 g C m<sup>−2</sup> d<sup>−1</sup> is approximately 0.5 mg L<sup>−1</sup>. Exploiting the C sink potential of lakes requires understanding the environmental factors that control metabolic processes; however, there is a lack of effective monitoring and evaluation of the highly heterogeneous and diverse autotrophic C fixation processes in inland waters.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104968"},"PeriodicalIF":10.8,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter G. Betts , David Moore , Alan Aitken , Teagan Blaikie , Mark Jessell , Laurent Ailleres , Robin Armit , Mark McLean , Radhakrishna Munukutla , Chibuzo Chukwu
{"title":"Geology from aeromagnetic data","authors":"Peter G. Betts , David Moore , Alan Aitken , Teagan Blaikie , Mark Jessell , Laurent Ailleres , Robin Armit , Mark McLean , Radhakrishna Munukutla , Chibuzo Chukwu","doi":"10.1016/j.earscirev.2024.104958","DOIUrl":"10.1016/j.earscirev.2024.104958","url":null,"abstract":"<div><div>This review aims to bridge the knowledge gap between geological and geophysical communities by elucidating the interpretation of aeromagnetic data. Aeromagnetic surveys measure the Earth's magnetic field variations and provide critical insights into subsurface geology, including basins, stratigraphy, igneous rocks and structural geology. The magnetic properties of rocks make these datasets valuable for identifying anomalies associated with various rock types and their magnetic responses. However, interpreting aeromagnetic data is complex due to the diverse geological processes that influence the formation and distribution of magnetic minerals, which must then be correlated with geological phenomena and features. Despite improved data accessibility and processing, many geoscientists still find interpreting aeromagnetic data challenging, resulting in a shortage of skilled expertise for research and industry applications. Accurate interpretation necessitates a thorough understanding of data collection and processing, recognising both the insights and limitations of the methods used and understanding how data resolution impacts the scale of interpretable geological features. This review is intended to assist those grappling with these challenges and to aid the geophysical community in interpreting complex geological features.</div><div>Data treatment is explained with a focus on the reasons for specific processing methods rather than their mathematical foundations. Emphasis is placed on rock properties and their influence on aeromagnetic data expressions. The aeromagnetic expressions of common geological elements, including sedimentary, igneous, and metamorphic rocks, and their structures, such as stratigraphy and structural geometries related to folding and faulting, are explored. The discussion covers how these responses arise and how to identify them. Our explanations aim to bolster confidence in data interpretation for geologists new to aeromagnetic data and geophysicists who may not regularly interpret geological information from such data.</div><div>Finally, we present strategies and pitfalls for interpreting aeromagnetic data, discuss automated interpretation methods, and offer practical guidance to improve interpretation skills and outcomes.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104958"},"PeriodicalIF":10.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jonathan Ford , Angelo Camerlenghi , Michele Rebesco , Gabriele Uenzelmann-Neben , Estella Weigelt
{"title":"Seismic cyclostratigraphy: Hypothesis testing for orbital cyclicity using seismic reflection data","authors":"Jonathan Ford , Angelo Camerlenghi , Michele Rebesco , Gabriele Uenzelmann-Neben , Estella Weigelt","doi":"10.1016/j.earscirev.2024.104962","DOIUrl":"10.1016/j.earscirev.2024.104962","url":null,"abstract":"<div><div>Several studies report observations of orbital cyclicity in seismic reflection data as distinct power spectral peaks that align with Milanković periodicities. It remains unclear, however, if hypothesis testing for orbital forcing using seismic data can be performed with statistical power comparable to directly sampled data, such as outcrop, drill core or borehole logs. In this study we aim to quantify this using Monte Carlo ensemble modelling to compare seismic and borehole log cyclostratigraphy. We develop a method for spectral background estimation that accounts for some of the amplitude and frequency effects inherent to seismic data. We then forward model the seismic response of an ensemble of models where the acoustic impedance approximates red noise, with and without an injected orbital signal from an astronomical solution. We demonstrate two examples: i) a simplified model with constant background velocity, constant sedimentation rate and a parametric seismic source wavelet, and ii) a real-world example based on ODP Site 1084 (Cape Basin). We observe that the sensitivity and specificity for the seismic case are strongly frequency-dependent, compared to the largely frequency-independent results for the borehole log cyclostratigraphy. For the real-world data example, we observe a spectral peak corresponding to 95 kyr eccentricity cyclicity with an uncalibrated confidence level of >95 %. Our Monte Carlo ensemble modelling, however, shows that the false positive rate at this frequency and confidence level is around 25 %, compared to around 5 % for the equivalent borehole log cyclostratigraphy. We also demonstrate short-period eccentricity modulation and bundling analysis applied to the seismic data, which is able to successfully invert for the model sedimentation rate for the simplified synthetic example. These results suggest that reliably identifying Milanković cycles from seismic reflection data is strongly dependent on the site geology, the geophysical parameters and the spectral frequency in question. Seismic examples should ideally be “ground truthed” against positive evidence of orbital cyclicity from a nearby borehole. In such cases, seismic data can be used to extrapolate borehole cyclostratigraphy data both laterally between boreholes and vertically beyond the maximum drilled depth. We suggest that sediment drifts are the sedimentary environment that is most promising for the detection of orbital cyclicity in seismic reflection images, and similar principles could also be applied to other geophysical reflection methods such as sub-bottom profilers.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104962"},"PeriodicalIF":10.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overview of approaches for reducing uncertainties in hydrological forecasting: Progress and challenges","authors":"Anandharuban Panchanathan , Amirhossein Ahrari , Kedar Surendranath Ghag , Syed Mustafa , Ali Torabi Haghighi , Bjørn Kløve , Mourad Oussalah","doi":"10.1016/j.earscirev.2024.104956","DOIUrl":"10.1016/j.earscirev.2024.104956","url":null,"abstract":"<div><div>Uncertainty plays a key role in hydrological modeling and forecasting, which can have tremendous environmental, economic, and social impacts. Therefore, it is crucial to comprehend the nature of this uncertainty and identify its scope and effects in a way that enhances hydrological modeling and forecasting. During recent decades, hydrological researchers investigated several approaches for reducing inherent uncertainty considering the limitations of sensor measurement, calibration, parameter setting, model conceptualization, and validation. Nevertheless, the scope and diversity of applications and methodologies, sometimes brought from other disciplines, call for an extensive review of the state-of-the-art in this field in a way that promotes a holistic view of the proposed concepts and provides textbook-like guidelines to hydrology researchers and the community. This paper contributes to this goal where a systematic review of the last decade's research (2010 onward) is carried out. It aims to synthesize the theories and tools for uncertainty reduction in surface hydrological forecasting, providing insights into the limitations of the current state-of-the-art and laying down foundations for future research. A special focus on remote sensing and multi-criteria-based approaches has been considered. In addition, the paper reviews the current state of uncertainty ontology in hydrological studies and provides new categorizations of the reviewed techniques. Finally, a set of freely accessible remotely sensed data and tools useful for uncertainty handling and hydrological forecasting are reviewed and pointed out.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104956"},"PeriodicalIF":10.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remote sensing for shallow bathymetry: A systematic review","authors":"Jinchen He, Shuhang Zhang, Xiaodong Cui, Wei Feng","doi":"10.1016/j.earscirev.2024.104957","DOIUrl":"10.1016/j.earscirev.2024.104957","url":null,"abstract":"<div><div>Shallow bathymetric mapping is important for navigation safety and geomorphologic, hydrologic and oceanographic research. However, field measurements and shipborne sonar are inefficient and dangerous to operate in shallow-water areas. In recent years, owing to its high efficiency, non-contact, and repeated observation benefits, remotely sensed bathymetry has grown quickly and is now being explored in depth. Spectral, photo, laser, and wave-derived bathymetry are among the common methods, which use platforms such as satellites, aircraft, and drones, and sensors such as optical cameras, lasers, and radars. These techniques provide bathymetry for shallow seas, rivers, lakes, and reservoirs. However, existing reviews are either outdated or cover just one aspect of bathymetry; a systematic review is needed. In this study, a bibliometric analysis of peer-reviewed research papers retrieved from the Scopus database was conducted. Based on this analysis, we further summarize the current methods, platforms, sensors, and applications in remote sensing bathymetry, and present our perspectives. Our results indicate that satellite-derived bathymetry is the current focus of this subject, while emerging drones generate higher-resolution bathymetric data. In addition, spectrally derived bathymetry is widely implemented in shallow waters, and laser bathymetry is highly accurate, while wave-derived bathymetry is an effective supplement for existing optical methods in coastal waters. Meanwhile, water penetrating radar, tethered sonar, and satellite altimetry are widely used for inland water bathymetry. However, single bathymetric approaches have their own limitations and typical physical/empirical models are often unable to accurately retrieve water depths in complicated situations. Therefore, remote sensing-based shallow-water bathymetry is moving towards data-driven modeling and multi-source coupling.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104957"},"PeriodicalIF":10.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruno A.A. Monteiro , Gabriel L. Canguçu , Leonardo M.S. Jorge , Rafael H. Vareto , Bryan S. Oliveira , Thales H. Silva , Luiz Alberto Lima , Alexei M.C. Machado , William Robson Schwartz , Pedro O.S. Vaz-de-Melo
{"title":"Literature review on deep learning for the segmentation of seismic images","authors":"Bruno A.A. Monteiro , Gabriel L. Canguçu , Leonardo M.S. Jorge , Rafael H. Vareto , Bryan S. Oliveira , Thales H. Silva , Luiz Alberto Lima , Alexei M.C. Machado , William Robson Schwartz , Pedro O.S. Vaz-de-Melo","doi":"10.1016/j.earscirev.2024.104955","DOIUrl":"10.1016/j.earscirev.2024.104955","url":null,"abstract":"<div><div>This systematic literature review provides a comprehensive overview of the current state of deep learning (DL) specifically targeted at semantic segmentation in seismic data, with a particular focus on facies segmentation. We begin by comparing the contributions of DL to traditional techniques used in seismic image interpretation. The review then explores the learning paradigms, architectures, loss functions, public datasets, and evaluation metrics employed in seismic data segmentation. While supervised learning remains the dominant approach, recent years have seen a growing interest in semi-supervised and unsupervised methods to address the challenge of limited labeled data. Additionally, we found that the U-Net architecture is the most prevalent backbone for semantic segmentation, appearing in one-third of the articles reviewed. We also present a comprehensive compilation of the results obtained by 24 methods and discuss the challenges and research opportunities in this field. Notably, the lack of standardized protocols for performance comparison, combined with variability in datasets and evaluation metrics across studies, raises questions about what truly constitutes the current state of the art in semantic segmentation of seismic data.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104955"},"PeriodicalIF":10.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}