Jonathan Ford , Angelo Camerlenghi , Michele Rebesco , Gabriele Uenzelmann-Neben , Estella Weigelt
{"title":"Seismic cyclostratigraphy: Hypothesis testing for orbital cyclicity using seismic reflection data","authors":"Jonathan Ford , Angelo Camerlenghi , Michele Rebesco , Gabriele Uenzelmann-Neben , Estella Weigelt","doi":"10.1016/j.earscirev.2024.104962","DOIUrl":"10.1016/j.earscirev.2024.104962","url":null,"abstract":"<div><div>Several studies report observations of orbital cyclicity in seismic reflection data as distinct power spectral peaks that align with Milanković periodicities. It remains unclear, however, if hypothesis testing for orbital forcing using seismic data can be performed with statistical power comparable to directly sampled data, such as outcrop, drill core or borehole logs. In this study we aim to quantify this using Monte Carlo ensemble modelling to compare seismic and borehole log cyclostratigraphy. We develop a method for spectral background estimation that accounts for some of the amplitude and frequency effects inherent to seismic data. We then forward model the seismic response of an ensemble of models where the acoustic impedance approximates red noise, with and without an injected orbital signal from an astronomical solution. We demonstrate two examples: i) a simplified model with constant background velocity, constant sedimentation rate and a parametric seismic source wavelet, and ii) a real-world example based on ODP Site 1084 (Cape Basin). We observe that the sensitivity and specificity for the seismic case are strongly frequency-dependent, compared to the largely frequency-independent results for the borehole log cyclostratigraphy. For the real-world data example, we observe a spectral peak corresponding to 95 kyr eccentricity cyclicity with an uncalibrated confidence level of >95 %. Our Monte Carlo ensemble modelling, however, shows that the false positive rate at this frequency and confidence level is around 25 %, compared to around 5 % for the equivalent borehole log cyclostratigraphy. We also demonstrate short-period eccentricity modulation and bundling analysis applied to the seismic data, which is able to successfully invert for the model sedimentation rate for the simplified synthetic example. These results suggest that reliably identifying Milanković cycles from seismic reflection data is strongly dependent on the site geology, the geophysical parameters and the spectral frequency in question. Seismic examples should ideally be “ground truthed” against positive evidence of orbital cyclicity from a nearby borehole. In such cases, seismic data can be used to extrapolate borehole cyclostratigraphy data both laterally between boreholes and vertically beyond the maximum drilled depth. We suggest that sediment drifts are the sedimentary environment that is most promising for the detection of orbital cyclicity in seismic reflection images, and similar principles could also be applied to other geophysical reflection methods such as sub-bottom profilers.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104962"},"PeriodicalIF":10.8,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An overview of approaches for reducing uncertainties in hydrological forecasting: Progress and challenges","authors":"Anandharuban Panchanathan , Amirhossein Ahrari , Kedar Surendranath Ghag , Syed Mustafa , Ali Torabi Haghighi , Bjørn Kløve , Mourad Oussalah","doi":"10.1016/j.earscirev.2024.104956","DOIUrl":"10.1016/j.earscirev.2024.104956","url":null,"abstract":"<div><div>Uncertainty plays a key role in hydrological modeling and forecasting, which can have tremendous environmental, economic, and social impacts. Therefore, it is crucial to comprehend the nature of this uncertainty and identify its scope and effects in a way that enhances hydrological modeling and forecasting. During recent decades, hydrological researchers investigated several approaches for reducing inherent uncertainty considering the limitations of sensor measurement, calibration, parameter setting, model conceptualization, and validation. Nevertheless, the scope and diversity of applications and methodologies, sometimes brought from other disciplines, call for an extensive review of the state-of-the-art in this field in a way that promotes a holistic view of the proposed concepts and provides textbook-like guidelines to hydrology researchers and the community. This paper contributes to this goal where a systematic review of the last decade's research (2010 onward) is carried out. It aims to synthesize the theories and tools for uncertainty reduction in surface hydrological forecasting, providing insights into the limitations of the current state-of-the-art and laying down foundations for future research. A special focus on remote sensing and multi-criteria-based approaches has been considered. In addition, the paper reviews the current state of uncertainty ontology in hydrological studies and provides new categorizations of the reviewed techniques. Finally, a set of freely accessible remotely sensed data and tools useful for uncertainty handling and hydrological forecasting are reviewed and pointed out.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104956"},"PeriodicalIF":10.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remote sensing for shallow bathymetry: A systematic review","authors":"Jinchen He, Shuhang Zhang, Xiaodong Cui, Wei Feng","doi":"10.1016/j.earscirev.2024.104957","DOIUrl":"10.1016/j.earscirev.2024.104957","url":null,"abstract":"<div><div>Shallow bathymetric mapping is important for navigation safety and geomorphologic, hydrologic and oceanographic research. However, field measurements and shipborne sonar are inefficient and dangerous to operate in shallow-water areas. In recent years, owing to its high efficiency, non-contact, and repeated observation benefits, remotely sensed bathymetry has grown quickly and is now being explored in depth. Spectral, photo, laser, and wave-derived bathymetry are among the common methods, which use platforms such as satellites, aircraft, and drones, and sensors such as optical cameras, lasers, and radars. These techniques provide bathymetry for shallow seas, rivers, lakes, and reservoirs. However, existing reviews are either outdated or cover just one aspect of bathymetry; a systematic review is needed. In this study, a bibliometric analysis of peer-reviewed research papers retrieved from the Scopus database was conducted. Based on this analysis, we further summarize the current methods, platforms, sensors, and applications in remote sensing bathymetry, and present our perspectives. Our results indicate that satellite-derived bathymetry is the current focus of this subject, while emerging drones generate higher-resolution bathymetric data. In addition, spectrally derived bathymetry is widely implemented in shallow waters, and laser bathymetry is highly accurate, while wave-derived bathymetry is an effective supplement for existing optical methods in coastal waters. Meanwhile, water penetrating radar, tethered sonar, and satellite altimetry are widely used for inland water bathymetry. However, single bathymetric approaches have their own limitations and typical physical/empirical models are often unable to accurately retrieve water depths in complicated situations. Therefore, remote sensing-based shallow-water bathymetry is moving towards data-driven modeling and multi-source coupling.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104957"},"PeriodicalIF":10.8,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bruno A.A. Monteiro , Gabriel L. Canguçu , Leonardo M.S. Jorge , Rafael H. Vareto , Bryan S. Oliveira , Thales H. Silva , Luiz Alberto Lima , Alexei M.C. Machado , William Robson Schwartz , Pedro O.S. Vaz-de-Melo
{"title":"Literature review on deep learning for the segmentation of seismic images","authors":"Bruno A.A. Monteiro , Gabriel L. Canguçu , Leonardo M.S. Jorge , Rafael H. Vareto , Bryan S. Oliveira , Thales H. Silva , Luiz Alberto Lima , Alexei M.C. Machado , William Robson Schwartz , Pedro O.S. Vaz-de-Melo","doi":"10.1016/j.earscirev.2024.104955","DOIUrl":"10.1016/j.earscirev.2024.104955","url":null,"abstract":"<div><div>This systematic literature review provides a comprehensive overview of the current state of deep learning (DL) specifically targeted at semantic segmentation in seismic data, with a particular focus on facies segmentation. We begin by comparing the contributions of DL to traditional techniques used in seismic image interpretation. The review then explores the learning paradigms, architectures, loss functions, public datasets, and evaluation metrics employed in seismic data segmentation. While supervised learning remains the dominant approach, recent years have seen a growing interest in semi-supervised and unsupervised methods to address the challenge of limited labeled data. Additionally, we found that the U-Net architecture is the most prevalent backbone for semantic segmentation, appearing in one-third of the articles reviewed. We also present a comprehensive compilation of the results obtained by 24 methods and discuss the challenges and research opportunities in this field. Notably, the lack of standardized protocols for performance comparison, combined with variability in datasets and evaluation metrics across studies, raises questions about what truly constitutes the current state of the art in semantic segmentation of seismic data.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104955"},"PeriodicalIF":10.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142441639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Post-collisional porphyry copper deposits in Tibet: An overview","authors":"Zhiming Yang , Kang Cao","doi":"10.1016/j.earscirev.2024.104954","DOIUrl":"10.1016/j.earscirev.2024.104954","url":null,"abstract":"<div><div>This paper presents a review of the geology and geochemistry of post-collisional PCDs in Tibet, including their spatial–temporal distribution, features of the ore-forming porphyries, magmatic origin and evolution, water–metal–S sources, alteration and mineralization features, fluid sources and evolution, conditions of Cu–Mo mineralization, and geodynamic models of their formation.</div><div>The post-collisional PCDs in Tibet contain total resources of ∼46 million tonnes (Mt) Cu at an average grade of 0.3–0.6 % Cu. They are mainly concentrated in the Gangdese, Yulong, and Ailaoshan–Red River belts, with ages of 30–13, 43–37, and 36–34 Ma, respectively. Their ore-forming porphyries have compositions that vary from granodiorite to monzogranite, syenogranite, and granite, and are high-K calc-alkaline to shoshonitic, with adakite-like signatures and highly variable Sr–Nd–Pb–Hf isotopic compositions. The ore-forming porphyries were mainly generated by partial melting of subduction-modified, thickened mafic lower crust with contributions from metasomatized lithospheric mantle. The causes of lower-crustal melting include asthenospheric upwelling associated with delamination of lithospheric mantle or slab tearing/break-off, and/or underplating of mafic magmas derived from metasomatized subcontinental lithospheric mantle. Ore-forming metals and S were mainly sourced by remelting of sulfide phases introduced into the lower crust during pre-collisional arc magmatism. Water necessary for mineralization was concentrated by dehydration reactions in the upper part of the subducting continental plate and/or degassing of water-rich ultrapotassic and/or alkaline mafic magmas derived from the mantle.</div><div>Similar to subduction-related PCDs, post-collisional PCDs in Tibet exhibit typical alteration zoning from inner potassic to outer propylitic zones, but with more intense overprinting of phyllic alteration on the former two alteration zones, likely due to higher rates of <em>syn</em>-mineralization uplift. Copper mineralization in post-collisional PCDs is mainly associated with phyllic alteration (particularly chlorite–sericite alteration) and, to a lesser extent, with potassic alteration, which is different from the typical association with potassic alteration in subduction-related PCDs. The initial ore-forming fluids in the post-collisional PCDs are single-phase, intermediate-density, and low-salinity fluids derived from evolved magma reservoirs. With ascent and decompression, the single-phase fluids separate into immiscible metal-rich hypersaline liquids responsible for potassic alteration and a low-salinity vapor. The evolved single-phase fluids are possibly diluted by meteoric waters, which leads to phyllic alteration. Cooling of magmatic–hydrothermal fluids may control metal precipitation in some post-collisional PCDs.</div><div>The development of post-collisional PCDs in Tibet indicates that other collision zones worldwide also have the potenti","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104954"},"PeriodicalIF":10.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ce Wang , Heqi Cui , Cheng-Shing Chiang , Ming Su , Letian Zeng , Junmin Jia , Liangjie Wei
{"title":"Regional detrital zircon record of the drainage sediments surrounding the South China Sea: Provenance signature and tectonic implications","authors":"Ce Wang , Heqi Cui , Cheng-Shing Chiang , Ming Su , Letian Zeng , Junmin Jia , Liangjie Wei","doi":"10.1016/j.earscirev.2024.104953","DOIUrl":"10.1016/j.earscirev.2024.104953","url":null,"abstract":"<div><div>U–Pb geochronology of detrital zircon is a powerful proxy that has seen significant growth and led to breakthroughs in understanding the sedimentary process and tectonic evolution in the South China Sea and its adjacent source terranes. However, uncertainties remain in determining the provenance of sediments due to the lack of systematic age compositions of the surrounding eroding sources. Here we present a new zircon U–Pb geochronological dataset from major drainage systems in seven geological domains surrounding the South China Sea, including large and coastal rivers in the South China and Indochina blocks, as well as rivers on the islands of Hainan, Taiwan, Luzon, Palawan, and Borneo. This dataset, combined with published data, forms a comprehensive detrital zircon U–Pb geochronological and Hf isotopic database (<em>n</em> = 21,580) for fluvial systems discharging into the South China Sea. The results show that these detrital zircons, with ages ranging from the Archean to the Cenozoic, have two major age groups at 260–220 Ma and 130–80 Ma and subordinate age populations at 2600–2400 Ma, 1900–1700 Ma, 1000–600 Ma, 500–390 Ma, and 40–20 Ma, corresponding to the major tectono-magmatic events in East and Southeast Asia. Detailed comparisons reveal distinct age signatures for each drainage system correlated with the basement characteristics of river basins, indicating a heterogeneous zircon age distribution. The findings indicate that the surrounding terranes have a significantly different crustal evolution history, with juvenile crustal growth occurring in the East and Southeast Asian continent predominantly during 2600–2400 Ma, 1800–1500 Ma, and 1000–700 Ma, and on the island of Luzon during the Cenozoic. This study provides a detrital zircon record for drainage systems surrounding the South China Sea and presents a method for defining regional first-order strategies to characterize the provenance and crustal evolution of the source terranes. The integrated dataset provides a critical foundation for investigating regional sediment provenance and tectonic correlations in East and Southeast Asia.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104953"},"PeriodicalIF":10.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142433065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Did the Deccan Volcanism impact the Indian flora during the Maastrichtian?","authors":"Shreya Mishra , Mahi Bansal , Vandana Prasad , Vikram Partap Singh , Srikanta Murthy , Shalini Parmar , Torsten Utescher , Ranjit Khangar","doi":"10.1016/j.earscirev.2024.104950","DOIUrl":"10.1016/j.earscirev.2024.104950","url":null,"abstract":"<div><div>The Deccan-associated sediments (Lameta and intertrappean deposits) hold great potential for understanding the role of Deccan Volcanism in the late Maastrichtian ecological upheaval. However, it is challenging to ascertain Deccan Volcanism driven floral changes on the Indian Plate due to unresolvedstratigraphyic and lack of well-dated terrestrial sequences. We provide a thorough palaeobotanical, palaeoclimatic and palaeobiogeographic review of the pre-Deccan (Lameta deposits) and <em>syn</em>-Deccan (intertrappean deposits) sequences. We present a detailed palynological analysis of C29R magnetochron intertrappean section from Yeotmal, central India, depicting episodic regional floral responses to volcanism. We have critically reviewed the Indian Maastrichtian palaeofloral and palaeoclimatic records within the best-resolved chronologies to clarify the spatiotemporal changes in palaeovegetation and palaeoclimate pertaining to the Deccan Volcanism. Furthermore, we evaluated the global fossil records of all the nearest living relatives of the studied assemblage to enhance our understanding of the genesis of the late Maastrichtian flora of the Deccan Volcanic Province.</div><div>Our study showcases three stages of the Maastrichtian floral succession, corresponding to a quiescent phase between two secondary magmatic pulses of the C29R Magnetochron. Palaeowildfires and massive magmatic outflow caused by the active volcanism severely damaged the pre-existing flora. Progressively, confined and diminished volcanism at Stage-I allowed few aquatic and herbaceous species to flourish within the accessible lacustrine habitats. The dormant volcanic activity at Stage-II, in conjunction with the warm (MAT - ∼26 °C) and moist (MAP - ∼2270 mm) conditions due to latitudinal shifting of the Indian Plate within the Inter Tropical Convergence Zone, facilitated rapid expansion and diversification of the low-lying megathermal angiosperm forest within various habitats along shallow embayments. The gradual resurgence of volcanic activity at Stage-III resulted in widespread wildfires and forest knockdowns. The swift revival of the hyper-diverse tropical flora during the quiescent phase (Stage-II) does not show long-term (millennial scale) adverse impact of the Deccan Volcanism on the Indian Maastrichtian flora. The palaeobotanical and palaeoclimatic review suggests a consistent subtropical to tropical climate on the Indian Plate during the late Maastrichtian. However, a shift in seasonality from a seasonally dry climate supporting gymnosperm-angiosperm flora during the pre-Deccan phase to a seasonally wet climate and angiosperm-dominated flora during the <em>syn</em>-Deccan phase is noticeable. Furthermore, the palaeobiogeographic analysis suggests that much of the Maastrichtian biodiversity on the Indian Plate is a consequence of floral influx from South America and Africa via the Kohistan-Ladakh Island arc. Nonetheless, 41.2 % of the palaeoendemic taxa in the stu","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104950"},"PeriodicalIF":10.8,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142446637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachary F.M. Burton , Tim R. McHargue , Stephan A. Graham
{"title":"Global Eocene-Oligocene unconformity in clastic sedimentary basins","authors":"Zachary F.M. Burton , Tim R. McHargue , Stephan A. Graham","doi":"10.1016/j.earscirev.2024.104912","DOIUrl":"10.1016/j.earscirev.2024.104912","url":null,"abstract":"<div><div>Global sedimentary hiatuses are well-documented in ancient pelagic sediment, and include Paleocene, Eocene-Oligocene boundary, and Miocene hiatuses. Less clear is the extent of these hiatuses in continental margin settings. Here, we test the hypothesis that global hiatuses evident in pelagic sections are also manifested in siliciclastic basins of continental margins globally. We choose to focus on the Eocene greenhouse to Oligocene icehouse transition, a period that is remarkable as the most profound climatic transition of the Cenozoic, and a period characterized by extreme cooling and expansion of polar ice, sea-level fall, and global changes to ocean circulation. We perform a comprehensive review of marine siliciclastic basin literature to produce a global inventory of Eocene-Oligocene unconformities. We find evidence for a prominent Eocene-Oligocene unconformity in sedimentary basins along the margins of every continent. The globally-widespread distribution of unconformities suggests global controls on their development. Furthermore, Eocene-Oligocene erosion surfaces are common in shelf settings, as well as in deep-water settings from slope to basin floor, indicating unconformity-generating processes across a wide range of water depths. Global sea-level fall may have driven subaerial shelf exposure and erosive down-slope processes including submarine canyon cutting and mass wasting. Meanwhile, the intensification of deep-ocean thermohaline currents potentially induced erosion of not only pelagic successions, but also of clastic successions. Overall, our documentation of globally-widespread Eocene-Oligocene unconformities suggests global controls, of which the extreme climatic and oceanographic changes of the greenhouse to icehouse transition seem particularly compelling.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104912"},"PeriodicalIF":10.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
David B. Kemp , Zhong Han , Xiumian Hu , Wenhan Chen , Simin Jin , Kentaro Izumi , Qing Yan , Viktória Baranyi , Xin Jin , Jacopo Dal Corso , Yuzhu Ge
{"title":"Global hydroclimate perturbations during the Toarcian oceanic anoxic event","authors":"David B. Kemp , Zhong Han , Xiumian Hu , Wenhan Chen , Simin Jin , Kentaro Izumi , Qing Yan , Viktória Baranyi , Xin Jin , Jacopo Dal Corso , Yuzhu Ge","doi":"10.1016/j.earscirev.2024.104946","DOIUrl":"10.1016/j.earscirev.2024.104946","url":null,"abstract":"<div><div>An intensification of the hydrological cycle is an expected consequence of global warming, and this will likely lead to spatially variable precipitation and drought extremes, and more intense tropical storms. Deep time hyperthermal events, characterised by large-scale carbon release and transient global warming, have the potential to provide insights into the nature and magnitude of hydroclimate changes in response to warming. The Toarcian oceanic anoxic event (T-OAE, or Jenkyns Event, ∼183 Ma) was a severe hyperthermal, and is associated with evidence for marked changes in hydroclimate, including: intensified tropical cyclone activity, an increase in global chemical weathering rates, and elevated freshwater runoff and terrigenous sediment fluxes to basins. Nevertheless, key knowledge gaps exist regarding the scale, significance, distribution and interpretation of these changes. Here, we review the evidence for T-OAE hydroclimate changes based on published data from 109 sites. Although these sites are primarily concentrated in the northwest Tethys region, we show that evidence for T-OAE hydroclimate change was globally distributed, and that most sites (63 %) record evidence consistent with an intensification of hydrological cycling under hotter conditions likely characterised by weather/precipitation extremes. Evidence for enhanced storm activity is common; recorded at up to a third of sites from both low and middle latitudes. This evidence is consistent with climate model predictions of increased tropical cyclone intensity and a poleward shift in storm tracks under elevated atmospheric CO<sub>2</sub>. Evidence for enhanced weathering and terrigenous fluxes is also common. This evidence, coupled with the evidence for increased storminess, may help explain increased turbidite deposition during the event recorded at some deep-water sites. Although affected by geographic and perhaps sedimentological biases, our findings underline how hydroclimate change was an inherent and perhaps defining characteristic of the T-OAE, potentially of equal paleoenvironmental significance to the seawater deoxygenation that originally defined the event.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104946"},"PeriodicalIF":10.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas J. Gardiner , Richard M. Palin , Lot Koopmans , Martin F. Mangler , Laurence J. Robb
{"title":"On tin and lithium granite systems: A crustal evolution perspective","authors":"Nicholas J. Gardiner , Richard M. Palin , Lot Koopmans , Martin F. Mangler , Laurence J. Robb","doi":"10.1016/j.earscirev.2024.104947","DOIUrl":"10.1016/j.earscirev.2024.104947","url":null,"abstract":"<div><div>The battery metals tin and lithium (Sn<img>Li) are key to renewable energy technologies, with demand driving new interest in the formation and exploration of tin granites and lithium-caesium‑tantalum (LCT) pegmatites. These magmatic-hydrothermal systems originate from highly evolved, reduced, peraluminous, volatile-rich granitic melts which develop elevated concentrations of incompatible metals. Tin granite deposits form either as disseminated magmatic cassiterite, or hydrothermal quartz-cassiterite lodes and greisens, with Li-bearing fluids driving late-stage mica alteration to Li-rich varieties. Conversely, LCT pegmatites record a complex crystallization with Li ores forming during primary magmatic crystallization, and Sn associated with hydrothermal overprints.</div><div>The first appearance in the geological record of Sn<img>Li granites and pegmatites is linked to the global onset of crustal reworking during Neoarchean terrane assembly, highlighting the key role of crustal evolution processes in their formation. In this contribution, we review our current understanding of Sn<img>Li metallogeny from source to sink through the lens of crustal processes. We focus on recent advances in petrological modelling and in situ microanalysis of rock-forming and accessory minerals, to examine tin granite and LCT pegmatite formation from partial melting of a source rock through melt extraction; emplacement, crystallization, and fractionation; to late-stage hydrothermal processes.</div><div>Quantitative thermodynamic modelling of crustal melting brings the ability to explore source rock anatexis and resulting melt compositions under various <em>P-T</em> conditions. Melt Sn<img>Li concentrations are controlled by mineral breakdown and metal partitioning between restite and melt. Sn and Li are primarily hosted in muscovite and biotite; deep crustal melting driving biotite breakdown releases Sn and Li into the melt, however shallow muscovite-driven melting restricts melt Li enrichment. It is difficult to generate a melt capable of saturating Li ore minerals from melting an ordinary clay protolith, hence either multi-stage melting or source metal pre-enrichment may be required.</div><div>Microanalysis allows high-precision geochemical and isotopic characterization of mineral phases. We review and summarize case studies using accessory minerals such as zircon, apatite, and mica, whose compositions are particularly powerful in tracking metal concentration and mobility during magma evolution and the magmatic-hydrothermal transition, with potential applications to exploration efforts. In tandem, the development of novel geochronometers such as cassiterite or columbite U<img>Pb help improve constraints on the age and timing of mineralization with respect to magmatism.</div><div>Finally, we consider the formation of tin granites and LCT pegmatites in 4D using the framework of long-lived, transcrustal magmatic systems. These models may help describe how prol","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"258 ","pages":"Article 104947"},"PeriodicalIF":10.8,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142424547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}