Francesco Piccioni, C. Casenave, B. Lemaire, P. Moigne, P. Dubois, B. Vinçon-Leite
{"title":"The response of small and shallow lakes to climate change: new insights from hindcast modelling","authors":"Francesco Piccioni, C. Casenave, B. Lemaire, P. Moigne, P. Dubois, B. Vinçon-Leite","doi":"10.5194/esd-2020-51","DOIUrl":"https://doi.org/10.5194/esd-2020-51","url":null,"abstract":"Abstract. Small and shallow water bodies are a dominant portion of inland freshwaters. However, the effects of climate change on such ecosystems have rarely been quantitatively adressed. We propose a methodology to evaluate the thermal response of a small and shallow lake to long-term changes in the meteorological conditions, through model simulations. To do so, a 3D hydrodynamic model is forced with meteorological data and used to hindcast the evolution of a urban lake in the Paris region between 1960 and 2017. Its thermal response is analyzed through the definition of a series of indices describing its thermal regime in terms of water temperature, thermal stratification and tendency to biomass production. Model results and meteorological forcing are analyzed over time to test the presence of monotonic trends and 3D simulations are exploited to highlight spatial patterns in the dynamics of stratification. The thermal regime of the study site underwent significant changes. Its response was highly correlated with three meteorological variables: air temperature, solar radiation and wind speed. Mean annual water temperature showed a considerable warming trend of 0.6 °C/dec, accompanied by longer stratification and by an increase of thermal energy available for biomass production. Water warming was significant during all four seasons, with maxima in Spring and Summer, while stratification and energy for phytoplankton growth increased especially during Spring and Autumn. Stratification only established in the deeper areas of the water body, possibly inducing heterogeneity in the release of nutrient from the sediment and in the development of harmful algal blooms. Numerous similar ecosystems might be experiencing analogous changes, and appropriate management policies are needed to preserve their ecological value.","PeriodicalId":11466,"journal":{"name":"Earth System Dynamics Discussions","volume":"16 1","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88281377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aine M. Gormley-Gallagher, S. Sterl, A. Hirsch, S. Seneviratne, E. Davin, W. Thiery
{"title":"Agricultural management effects on mean and extreme temperature\u0000trends","authors":"Aine M. Gormley-Gallagher, S. Sterl, A. Hirsch, S. Seneviratne, E. Davin, W. Thiery","doi":"10.5194/esd-2020-35","DOIUrl":"https://doi.org/10.5194/esd-2020-35","url":null,"abstract":"Abstract. Regression-based trend analysis is applied to observations and present-day ensemble simulations with the Community Earth System Model to assess if climate models overestimate warming trends because theoretical constant levels of irrigation and conservation agriculture (CA) are excluded. At the regional scale, an irrigation- and CA-induced acceleration of the annual mean near-surface air temperature (T2m) warming trends and the annual maximum daytime temperature (TXx) warming trends were evident. Estimation of the impact of irrigation and CA on the spatial average of the warming trends indicated that irrigation and CA have a pulse cooling effect on T2m and TXx, after which the warming trends increase at a greater rate than the control simulations. This differed at the local (subgrid) scale under irrigation where surface temperature cooling and the dampening of warming trends were both evident. As the local surface warming trends, in contrast to regional trends, do not account for atmospheric (water vapour) feedbacks, their dampening confirms the importance of atmospheric feedbacks (water vapour forcing) in explaining the enhanced regional trends. At the land surface, the positive radiative forcing signal is too weak to offset the local cooling from the irrigation-induced increase in the evaporative fraction. Our results underline that agricultural management has complex and nonnegligible impacts on the local climate and highlights the need to account for land management in climate projections.\u0000","PeriodicalId":11466,"journal":{"name":"Earth System Dynamics Discussions","volume":"284 1","pages":"1-27"},"PeriodicalIF":0.0,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76843127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}