Gaolei Zhao , Kefeng Li , Shimin Tian , Ruifeng Liang , Yuanming Wang
{"title":"Applying a coupled model framework to assess global climate change impacts on the river-type harmful algal blooms in the middle and lower reaches of the Hanjiang River, China","authors":"Gaolei Zhao , Kefeng Li , Shimin Tian , Ruifeng Liang , Yuanming Wang","doi":"10.1016/j.ecolind.2024.112834","DOIUrl":"10.1016/j.ecolind.2024.112834","url":null,"abstract":"<div><div>Global climate change (GCC), characterized by warming, affects the hydrological conditions at the basin scale and whether harmful algal blooms (HABs) occur at the scale of river ecological systems. Research on HABs mainly focuses on oceans and lakes, and there is still less research on the effects of GCC on river-type HABs that differ from oceans and lakes in hydrodynamic, water temperature, and nutrient conditions. This study constructed a coupled model framework that includes the GCC model, downscaling model, hydrological model, hydrodynamic model, and eutrophication model, analyzing and exploring the effect of changes in the aquatic ecological environment caused by GCC on river-type HABs in the middle and lower reaches of the Hanjiang River (MLHR). Firstly, based on the three GCC models and statistical downscaling model in CMIP6, high-precision meteorological factors such as future precipitation and temperature were obtained. Secondly, a coupled model based on SWAT and MIKE21-ECOLab was used with the digital elevation model (DEM), land use, soil, meteorological, pollution source, and measured terrain data in the MLHR Basin, which was validated by observed data. Thirdly, there has not been a significant increase in Chl-a, and the impact of GCC has not fundamentally changed the temporal and spatial distribution of HABs. Fourthly, this study proposed to use 0.2 m/s (Corresponding discharge 1160 m<sup>3</sup>/s) as the hydrodynamic condition for preventing and controlling HABs in the Shayang section.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112834"},"PeriodicalIF":7.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xavier Lecomte, Christophe Baltzinger, Anders Mårell
{"title":"Warning in the woods: Species-specific and functional responses of the understorey along a deer browsing intensity gradient in a mixed temperate forest in France","authors":"Xavier Lecomte, Christophe Baltzinger, Anders Mårell","doi":"10.1016/j.ecolind.2024.112766","DOIUrl":"10.1016/j.ecolind.2024.112766","url":null,"abstract":"<div><div>Understanding and predicting responses of plant community diversity and ecosystem functioning to disturbance is essential to achieving forest conservation and management goals. In recent decades, the abundance and geographic distribution of wild ungulates have expanded in many parts of Europe due to, among other factors, land-use changes, hunting regulations and lack of predators. The study aims to explore the effects of deer browsing and grazing intensity, estimated through a browsing index on woody and semi-woody plants, on understorey vegetation composition, analysing both taxonomic and functional diversity. Specifically, we aim to test the intermediate disturbance hypothesis (IDH), which states that plant biodiversity peaks at intermediate levels of browsing intensity regarding plant species richness and functional groups. We also aim to identify species revealing different levels of browsing intensity, accounting for plant functional traits. Our results revealed that intermediate levels of browsing intensity, through species replacement, strongly and positively affected total species richness. This result is consistent with the IDH prediction, but distinct patterns varied across plant functional types. Moreover, increasing browsing intensity favoured disturbance-tolerant species by replacing functional traits. These species were characterised by ruderal traits, including high specific leaf area, low leaf dry matter content, small height and seed mass, annual and short lifespans. However, although browsing intensity increased functional richness and decreased functional redundancy, indicator species analysis revealed that high browsing intensity favoured highly competitive, browsing-tolerant perennial species. These results suggest that annual species may fail to colonise the understorey even if they are favoured by deer browsing, thereby affecting the functioning and the stability of ecosystem, with a potential homogenisation of understorey vegetation. Although confounding effects cannot be ruled out (e.g., local vegetation structure and diversity), our study highlights the need to consider functional diversity when assessing deer effects on vegetation to draw a complete picture of plant-large herbivore interactions.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112766"},"PeriodicalIF":7.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianmin Qiao , Qin Zhang , Jing Shao , Qian Cao , Haimeng Liu , Furong Lv
{"title":"Spatial and temporal variation of water stress in China and its driving factors: A multi-scale analysis","authors":"Jianmin Qiao , Qin Zhang , Jing Shao , Qian Cao , Haimeng Liu , Furong Lv","doi":"10.1016/j.ecolind.2024.112820","DOIUrl":"10.1016/j.ecolind.2024.112820","url":null,"abstract":"<div><div>Water resources are fundamental for sustaining natural ecosystems and human activities, playing a critical role in the sustainable development of the regional environment. Under the dual pressures of human activities and climate change, however, the stress on water resources has become increasingly evident, emerging as one of the greatest global risks for the next decade. In this study, by applying the water stress index, Lorenz curve, and Theil index, we explored the spatiotemporal patterns and inequality distribution characteristics of water resource stress across two scales: catchment and basin. Additionally, we used partial least squares regression to identify the key factors influencing water resource stress. The results indicated significant regional variations in water stress across China during 2002 to 2020. At the catchment scale, areas with a water stress index greater than 0.4 were distributed in the eastern, northeastern and northwestern regions. While at the basin scale, a north–south pattern emerged with lower stress in the south and higher stress in the north. The Haihe and Huaihe river basins exhibited the highest water stress. The Lorenz curve deviated significantly from the line of absolute equality, indicating a high degree of inequality in regional water resource stress. The Theil index increased from 1.26 to 1.50, showing a slight upward trend in inequality. Analysis of the driving factors revealed that the Yellow River Basin was primarily influenced by GDP and population, the Songhua River Basin was affected by population and urban land use, and the Southwest River Basin is driven mainly by vegetation cover. Overall, precipitation was the most critical driver affecting water stress, predominantly exerting a negative influence. This study provides a theoretical basis for alleviating regional water stress and offers valuable insights for the scientific planning and management of water resources.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112820"},"PeriodicalIF":7.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Invasion of Pine Wilt Disease: A threat to forest carbon storage in China","authors":"Bohai Hu , Wenjiang Huang , Zhuoqing Hao , Jing Guo , Yanru Huang , Xiangzhe Cheng , Jing Zhao , Quanjun Jiao , Biyao Zhang","doi":"10.1016/j.ecolind.2024.112819","DOIUrl":"10.1016/j.ecolind.2024.112819","url":null,"abstract":"<div><div>China’s forests, which balance atmospheric carbon (C) levels through photosynthesis, play a crucial role in combating global climate change. The emergence of Pine wilt disease (PWD), caused by the pine wood nematode (PWN, <em>Bursaphelenchus xylophilus</em>), has challenged the stability of these forests, leading to significant tree mortality and disrupting the original ecological balance. However, the impact of PWD on carbon storage and recovery in Chinese forests remains unclear. In this study, we integrated multiple data sources, including forest surveys, remote sensing, and meteorological observations, and applied a method of finely partitioning the resistance of host pine trees across China. Using the MaxEnt model, a live carbon risk model, and a C recovery REGIME model that incorporates disturbance mechanisms, we predicted the forest C risk loss caused by the comprehensive invasion of PWD and assessed the C recovery time for affected forests. We estimate that the total risk of C loss due to PWD invasion under current climate conditions in Chinese forests is 483.23 Tg C, with an average C recovery time of 13.95 years. The main risk areas for PWD are concentrated in the southern coastal regions of China and adjacent provinces, presenting a risk spillover pattern that radiates from focal areas outward. The six provinces with the highest forest risk degree (risk C/total regional C) are, in order, Fujian (13.69%), Zhejiang (9.42%), Hunan (7.49%), Guangxi (7.40%), Jiangxi (7.35%), and Guangdong (7.05%). Our findings indicate that the severe consequences of PWD invasion have transformed affected forests from C sinks to sources. This underscores the urgency of implementing effective measures to block its introduction and spread, thereby promoting the recovery and sustainable development of forest ecosystems.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112819"},"PeriodicalIF":7.0,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jordyn Brown , Aaron Krivchenia , Matt J. Pierce , Courtney E. Richmond , Nathan Ruhl
{"title":"Developing cyanobacterial bloom indicators from spatiotemporal differences in productivity and water quality across a lake-stream network","authors":"Jordyn Brown , Aaron Krivchenia , Matt J. Pierce , Courtney E. Richmond , Nathan Ruhl","doi":"10.1016/j.ecolind.2024.112838","DOIUrl":"10.1016/j.ecolind.2024.112838","url":null,"abstract":"<div><div>Cyanobacterial Harmful Algal Blooms (cHABs) are an increasingly common occurrence in inland waters and carry ecological, economic, and public health consequences. It is difficult to predict when a cHAB will occur and there is a need to develop methods (indicators) to accurately predict the development of cHABs Here, we studied planktonic primary production (chlorophyll and phycocyanin) in a lake-stream network that is prone to cHABs in southern New Jersey, during bloom and non-bloom years. Primary productivity was lake-dependent, with productivity patterns interacting across sampling locations and years (p < 0.001 for both chlorophyll and phycocyanin). The lake with recurrent cHABs had higher productivity readings in both years, but the sampling location within this lake had a large influence on the observed primary productivity patterns. Productivity differences among lakes were greater in the bloom year compared to the non-bloom year. The bloom year was characterized by a strong correlation between conductivity and nitrate readings, suggesting that cHABs in our study system are associated with nutrient-laden runoff. The linear progression of primary productivity readings was a better indicator for the onset of cHAB conditions than temporal autocorrelation using weekly samples.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112838"},"PeriodicalIF":7.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142661878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guohao Xie , Yang Yang , Ying Hou , Bo Wang , Weiping Chen
{"title":"Evaluating the trade-offs between nutrient and cadmium levels in soils in northeastern China: Accounting for variations in soil factors","authors":"Guohao Xie , Yang Yang , Ying Hou , Bo Wang , Weiping Chen","doi":"10.1016/j.ecolind.2024.112795","DOIUrl":"10.1016/j.ecolind.2024.112795","url":null,"abstract":"<div><div>Agricultural soils have relied on the application of fertilizers to enhance soil fertility and yields in response to increasing food demands. However, the potentially hazardous trace elements that accumulate in soils have been largely overlooked. In this study, we set out to determine the soil factor indicators in croplands using Exploratory Factor Analysis to illuminate the trade-off between surplus soil nutrients and cadmium (Cd) accumulation as a result of fertilizer application. The research in northeastern China highlights the fact that studies tend to ignore the accumulation and distribution of hazardous heavy metals in production fields in favor of an over-emphasis on soil fertility indicators; an ultimately unsustainable approach. The model showed that soil nutrient could be identified based on three soil factors: soil organic matter, soil available nutrients, and soil nutrient buffer structures. Fertilization enhanced the level of available nutrients and significantly increased both soil organic matter and available phosphorus by 0.71 % and 11 mg kg<sup>−1</sup>, respectively. However, the long-term application of phosphorus (P) leads to a P-surplus and leaves soils more susceptible to Cd accumulation. The 90th percentile estimate of soil Cd concentration was 1.4 times higher than the P-optimal level. Scenario analyses of long-term fertilizer management indicated that, over a 50-year simulation period, the impact of Cd accumulation in soils in traditional agriculture was insignificant. However, prolonged application of excess P-fertilizer would lead to a continuous increase in the concentration of accumulated Cd from 0.17 mg kg<sup>−1</sup> to 0.40 mg kg<sup>−1</sup>. Trade-off and scenario analyses guide agricultural fertilization practices to preserve soil quality while sustaining productivity.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112795"},"PeriodicalIF":7.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gabriel Salako , Andrey Zaitsev , Bibiana Betancur-Corredor , David J. Russell
{"title":"Modelling and spatial prediction of earthworms ecological-categories distribution reveal their habitat and environmental preferences","authors":"Gabriel Salako , Andrey Zaitsev , Bibiana Betancur-Corredor , David J. Russell","doi":"10.1016/j.ecolind.2024.112832","DOIUrl":"10.1016/j.ecolind.2024.112832","url":null,"abstract":"<div><div>Earthworms are one of the important soil animals and have been generally described as soil engineers. Knowledge on environmental conditions driving the distribution and population of this soil animal and the habitat which support these conditions especially at the ecological level is required to understand their responses to these environmental conditions at different habitats so as to guide its usage as bio indicator of soil quality and health. In this study we use RandomForest (RF), a machine learning algorithm to model species distribution, density/abundance based (SDM/SAM) and predict the biodiversity distribution (richness and density, ind.m<sup>−2</sup>) of three basic earthworms ecological categories: epigeic, endogeic and anecic (including the epi-anecic subcategory) across soil and climate variables at multiple habitat type/land uses in Germany. Our study shows there are spatial/ geographic variation in the distribution of the species richness and density among the three earthworms’ ecological categories. Also their environmental and habitat preferences are equally different, while epigeic species are predicted to be climate driven mostly in forests, endogeics are predicted to be the most diverse (in richness and density), but are mostly driven by soil textural contents (clay and silt) and found primarily in arable and grassland. Vineyard and crop flood plain are predicted to be suitable and the preferred habitat for anecics/epi-anecics. This study also identify optimum environmental gradient at which the species density is at the peak in each of the earthworm’s ecological category which would not only provide guide on soil biodiversity monitoring but also the soil health status.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112832"},"PeriodicalIF":7.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua H. Kestel , Philip W. Bateman , David L. Field , Nicole E. White , Ben L. Phillips , Paul Nevill
{"title":"Spatio-temporal variation in arthropod-plant interactions: A direct comparison of eDNA metabarcoding of tree crop flowers and digital video recordings","authors":"Joshua H. Kestel , Philip W. Bateman , David L. Field , Nicole E. White , Ben L. Phillips , Paul Nevill","doi":"10.1016/j.ecolind.2024.112827","DOIUrl":"10.1016/j.ecolind.2024.112827","url":null,"abstract":"<div><div>Collating data about natural capital and the ecosystem services that underpin agricultural productivity, such as the activity of beneficial (e.g., pollinators) and antagonistic (e.g., plant pests) native and introduced arthropod taxa, is critical for timely management strategies. To date, these monitoring efforts have largely relied upon conventional survey and monitoring methods (e.g., sweep netting and morphological identifications), which are difficult to implement at the large scale of agriculture. Environmental DNA (eDNA) metabarcoding is a molecular method that amplifies trace amounts of DNA deposited by organisms from diverse substrates including soil, plant tissue and even air. In this study, we used eDNA metabarcoding of tree flowers, complemented with digital video recording (DVR) devices, to detect temporal, fine- and large-scale arthropod community changes across two <em>Persea americana</em> (‘Hass’ avocado) orchards. In total, we detected 42 arthropod families with eDNA metabarcoding. This molecular method detected five times the number of unique taxa (<em>N</em> = 50) compared to the DVRs (<em>N</em> = 10), nearly all of which are unmanaged native species. The number of arthropod eDNA detections increased by 14 % during peak flowering and included species from different functional groups including known arthropod pollinators, pests, parasites and predators. At fine-spatial scales, inflorescence samples collected in the upper and lower canopy show that Hymenoptera taxa were 13 % more likely to be detected in the upper canopy. While at large-spatial scales, eDNA metabarcoding showed that the arthropod communities in both orchards shared less than 50 % similarity at low flowering and became more similar towards peak flowering. With occupancy modelling, we determined that arthropod length did not correlate with eDNA detection probability. Our findings highlight the value of eDNA-based monitoring and illustrate that agroecosystem management requires a growing awareness that the production boundary has expanded, and that the goods and services that unmanaged arthropod species provide need to be included on the balance sheet.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112827"},"PeriodicalIF":7.0,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoxuan Li , Wen Song , Shisong Cao , You Mo , Mingyi Du , Ziyue He
{"title":"The impact of multidimensional urbanization on sustainable development goals (SDGs): A long-term analysis of the 31 provinces in China","authors":"Xiaoxuan Li , Wen Song , Shisong Cao , You Mo , Mingyi Du , Ziyue He","doi":"10.1016/j.ecolind.2024.112822","DOIUrl":"10.1016/j.ecolind.2024.112822","url":null,"abstract":"<div><div>Sustainable development, intimately linked to the survival of the global human population, has garnered immense attention. The rapid pace of urbanization has exerted a profound influence on the achievement and progress towards the United Nations’ Sustainable Development Goals (SDGs). Nevertheless, a knowledge gap persists regarding the comprehensive impact of urbanization on these goals. The present study delved into the multifaceted impacts of urbanization on SDGs through a comprehensive analysis of four distinct urbanization dimensions: land urbanization (LURB), economic urbanization (EURB), population urbanization (PURB), and social urbanization (SURB). We analyzed the spatiotemporal characteristics of the four-dimensional urbanizations in 31 provinces of China from 1995 to 2015 using impervious surface and statistical data. We employed the Spearman coefficient to investigate the interaction between urbanizations and 17 SDGs. Furthermore, we delved into how economic zone settings influenced these interactions. The results reveal that land expansion, GDP per capita, and the degree of social consumption exhibited stronger synergies with SDGs, whereas the share of the secondary sector and the urban population rate demonstrated more trade-off effects. This underscores the importance of considering the multifaceted nature of urbanization when striving to achieve the SDGs. Additionally, the diverse impact of urbanization patterns on SDG implementation across various economic zones emphasizes the need for tailored and region-specific strategies to maximize the positive outcomes of urbanization and promote sustainable development.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112822"},"PeriodicalIF":7.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Phosphorus transport process and driving mechanism in the sediment of farm ponds in small watersheds of three Gorges Reservoir area","authors":"Yifan Zhao, Wei Zhang, Weihua Zhang","doi":"10.1016/j.ecolind.2024.112787","DOIUrl":"10.1016/j.ecolind.2024.112787","url":null,"abstract":"<div><div>The water quality health of the farm ponds in the small watersheds of the Three Gorges Reservoir Area is critical to maintaining agricultural productivity. The main challenge in managing the water quality is predicting and controlling the release of total phosphorus (TP) from endogenous pollution in the substrate. Numerous studies have shown that endogenous pollution release from large water bodies like lakes is influenced by factors such as temperature and pH. However, knowledge about the response mechanisms in smaller water bodies, such as farm ponds, is still lacking. This study focuses on TP, using indoor simulation tests and orthogonal tests to investigate the transport and transformation of TP in four representative farm ponds located in Ruxi Town, at the heart of the Three Gorges Reservoir Area. Results showed that seasonal variations led to temperature changes thereby significantly affect TP release, with the highest release rates occurring in summer when the temperature was highest. The farm ponds demonstrated a significant annual cycle in phosphorus source-sink dynamics. Furthermore, factors including pH and water depth influenced the release rates; acidic conditions promoted phosphorus release from the substrate more effectively than alkaline conditions. Additionally, disturbances at lower intensities were observed to inhibit TP release. Building on these findings, this study further explored the advantages and limitations of using multiple regression analysis and BP Neural Network models for modeling phosphorus release and predicting annual TP release. Ultimately, the study proposes measures to reduce and control endogenous pollution, laying a foundation for managing eutrophication and protecting aquatic health in farm ponds.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112787"},"PeriodicalIF":7.0,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142662152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}