Advanced Healthcare Materials最新文献

筛选
英文 中文
Thermoforming for Small Feature Replication in Melt Electrowritten Membranes to Model Kidney Proximal Tubule. 在熔融电泳膜中进行小特征复制的热成型技术,以模拟肾近曲小管。
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-07 DOI: 10.1002/adhm.202401800
Marta G Valverde, Claudia Stampa Zamorano, Dora Kožinec, Laura Benito Zarza, Anne Metje van Genderen, Robine Janssen, Miguel Castilho, Andrei Hrynevich, Tina Vermonden, Jos Malda, Mylene de Ruijter, Rosalinde Masereeuw, Silvia M Mihăilă
{"title":"Thermoforming for Small Feature Replication in Melt Electrowritten Membranes to Model Kidney Proximal Tubule.","authors":"Marta G Valverde, Claudia Stampa Zamorano, Dora Kožinec, Laura Benito Zarza, Anne Metje van Genderen, Robine Janssen, Miguel Castilho, Andrei Hrynevich, Tina Vermonden, Jos Malda, Mylene de Ruijter, Rosalinde Masereeuw, Silvia M Mihăilă","doi":"10.1002/adhm.202401800","DOIUrl":"https://doi.org/10.1002/adhm.202401800","url":null,"abstract":"<p><p>A novel approach merging melt electrowriting (MEW) with matched die thermoforming to achieve scaffolds with micron-sized curvatures (200 - 800 µm versus 1000 µm of mandrel printing) for in vitro modeling of the kidney proximal tubule (PT) is proposed. Recent advances in this field emphasize the relevance of accurately replicating the intricate tissue microenvironment, particularly the curvature of the nephrons' tubular segments. While MEW offers promising capabilities for fabricating highly and porous precise 3D structures mimicking the PT, challenges persist in approximating the diameter of tubular scaffolds to match the actual PT. The thermoformed MEW membranes retain the initial MEW printing design parameters (rhombus geometry, porosity > 45%) while accurately following the imprinted curvature (ratios between 0.67-0.95). PT epithelial cells cultured on these membranes demonstrate the ability to fill in the large pores of the membrane by secreting their own collagen IV-rich extracellular matrix and form an organized, functional, and tight monolayer expressing characteristic PT markers. Besides approximating PT architecture, this setup maximizes the usable surface area for cell culture and molecular readouts. By closely mimicking the structural intricacies of native tissue architecture, this approach enhances the biomimetic fidelity of engineered scaffolds, offering potential applications beyond kidney tissue engineering.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2401800"},"PeriodicalIF":10.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Forming Supramolecular Nanofiber Hydrogel as a Biodegradable Liquid Embolic Agent for Postembolization Tissue Remodeling. 原位形成超分子纳米纤维水凝胶作为栓塞后组织重塑的可生物降解液体栓塞剂
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-07 DOI: 10.1002/adhm.202403784
Akihiro Nishiguchi, Miho Ohta, Debabrata Palai, Shima Ito, Kensaku Mori, Ryotaro Akagi, Christophe Bajan, Guillaume Lambard, Keitaro Sodeyama, Tetsushi Taguchi
{"title":"In Situ Forming Supramolecular Nanofiber Hydrogel as a Biodegradable Liquid Embolic Agent for Postembolization Tissue Remodeling.","authors":"Akihiro Nishiguchi, Miho Ohta, Debabrata Palai, Shima Ito, Kensaku Mori, Ryotaro Akagi, Christophe Bajan, Guillaume Lambard, Keitaro Sodeyama, Tetsushi Taguchi","doi":"10.1002/adhm.202403784","DOIUrl":"https://doi.org/10.1002/adhm.202403784","url":null,"abstract":"<p><p>Embolic agents have been widely used to treat blood vessel abnormalities in interventional radiology as a minimally invasive procedure. However, only a few biodegradable liquid embolic agents exhibit high embolization performance, biodegradability, and operability. Herein, the design of in situ-forming supramolecular nanofiber (SNF) hydrogels is reported as biodegradable liquid embolic agents with the assistance of Bayesian optimization through an active learning pipeline. Chemically modified gelatin with hydrogen-bonding moieties produces fibrin-inspired nanofiber-based hydrogels with a high blood coagulation capacity. The low viscosity of the SNF hydrogels makes them injectable using a microcatheter, and the hydrogel shows sufficient tissue adhesion to the blood vessel walls and very weak adhesion to the catheter tubes. Moreover, the SNF hydrogels exhibit high blood compatibility, cytocompatibility, cell-adhesive properties, and biodegradability (in vitro and in vivo). Intravascularly delivered SNF hydrogels induce embolization of rat femoral arteries. This biodegradable liquid embolic agent could be a powerful tool for interventional radiology in the treatment of various diseases, including aortic aneurysm stent grafting, gynecological diseases, and liver cancer.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403784"},"PeriodicalIF":10.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery. 将人造心脏组织作为基于 CRISPR 的丝裂原发现平台
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-07 DOI: 10.1002/adhm.202402201
Sophia DeLuca, Nicholas Strash, Yifan Chen, Marisa Patsy, Ashley Myers, Libertad Tejeda, Sarah Broders, Amber Miranda, Xixian Jiang, Nenad Bursac
{"title":"Engineered Cardiac Tissues as a Platform for CRISPR-Based Mitogen Discovery.","authors":"Sophia DeLuca, Nicholas Strash, Yifan Chen, Marisa Patsy, Ashley Myers, Libertad Tejeda, Sarah Broders, Amber Miranda, Xixian Jiang, Nenad Bursac","doi":"10.1002/adhm.202402201","DOIUrl":"10.1002/adhm.202402201","url":null,"abstract":"<p><p>Improved understanding of cardiomyocyte (CM) cell cycle regulation may allow researchers to stimulate pro-regenerative effects in injured hearts or promote maturation of human stem cell-derived CMs. Gene therapies, in particular, hold promise to induce controlled proliferation of endogenous or transplanted CMs via transient activation of mitogenic processes. Methods to identify and characterize candidate cardiac mitogens in vitro can accelerate translational efforts and contribute to the understanding of the complex regulatory landscape of CM proliferation and postnatal maturation. In this study, A CRISPR knockout-based screening strategy using in vitro neonatal rat ventricular myocyte (NRVM) monolayers is established, followed by candidate mitogen validation in mature 3-D engineered cardiac tissues (ECTs). This screen identified knockout of the purine metabolism enzyme adenosine deaminase (ADA-KO) as an effective pro-mitogenic stimulus. RNA-sequencing of ECTs further reveals increased pentose phosphate pathway (PPP) activity as the primary driver of ADA-KO-induced CM cycling. Inhibition of the pathway's rate limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD), prevented ADA-KO induced CM cycling, while increasing PPP activity via G6PD overexpression increased CM cycling. Together, this study demonstrates the development and application of a genetic/tissue engineering platform for in vitro discovery and validation of new candidate mitogens affecting regenerative or maturation states of cardiomyocytes.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402201"},"PeriodicalIF":10.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy. 蒽类内过氧化物作为自敏化单线态氧载体用于缺氧-肿瘤光动力疗法
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-06 DOI: 10.1002/adhm.202403009
Yan-Qin He, Jian-Hong Tang
{"title":"Anthracene-Based Endoperoxides as Self-Sensitized Singlet Oxygen Carriers for Hypoxic-Tumor Photodynamic Therapy.","authors":"Yan-Qin He, Jian-Hong Tang","doi":"10.1002/adhm.202403009","DOIUrl":"10.1002/adhm.202403009","url":null,"abstract":"<p><p>Singlet oxygen is a crucial reactive oxygen species (ROS) in photodynamic therapy (PDT). However, the hypoxic tumor microenvironment limits the production of cytotoxic singlet oxygen through the light irradiation of PDT photosensitizers (PSs). This restriction poses a major challenge in improving the effectiveness of PDT. To overcome this challenge, researchers have explored the development of singlet oxygen carriers that can capture and release singlet oxygen in physiological conditions. Among these developments, anthracene-based endoperoxides, initially discovered almost 100 years ago, have shown the ability to generate singlet oxygen controllably under thermal or photo stimuli. Recent advancements have led to the development of a new class of self-sensitized anthracene-endoperoxides, with potential applications in enhancing PDT effects for hypoxic tumors. This review discusses the current research progress in utilizing self-sensitized anthracene-endoperoxides as singlet oxygen carriers for improved PDT. It covers anthracene-conjugated small organic molecules, metal-organic complexes, polymeric structures, and other self-sensitized nano-structures. The molecular structural designs, mechanisms, and characteristics of these systems will be discussed. This review aims to provide valuable insights for developing high-performance singlet oxygen carriers for hypoxic-tumor PDT.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403009"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpenetrating Polymer Network Hydrogels with Tunable Viscoelasticity and Proteolytic Cleavability to Direct Stem Cells In Vitro. 具有可调粘弹性和蛋白水解裂解性的互穿聚合物网络水凝胶可引导体外干细胞。
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-06 DOI: 10.1002/adhm.202402656
Prannoy Seth, Jens Friedrichs, Yanuar Dwi Putra Limasale, Nicole Fertala, Uwe Freudenberg, Yixin Zhang, Ayala Lampel, Carsten Werner
{"title":"Interpenetrating Polymer Network Hydrogels with Tunable Viscoelasticity and Proteolytic Cleavability to Direct Stem Cells In Vitro.","authors":"Prannoy Seth, Jens Friedrichs, Yanuar Dwi Putra Limasale, Nicole Fertala, Uwe Freudenberg, Yixin Zhang, Ayala Lampel, Carsten Werner","doi":"10.1002/adhm.202402656","DOIUrl":"10.1002/adhm.202402656","url":null,"abstract":"<p><p>The dynamic nature of cellular microenvironments, regulated by the viscoelasticity and enzymatic cleavage of the extracellular matrix, remains challenging to emulate in engineered synthetic biomaterials. To address this, a novel platform of cell-instructive hydrogels is introduced, composed of two concurrently forming interpenetrating polymer networks (IPNs). These IPNs consist of the same basic building blocks - four-armed poly(ethylene glycol) and the sulfated glycosaminoglycan (sGAG) heparin - are cross-linked through either chemical or physical interactions, allowing for precise and selective tuning of the hydrogel's stiffness, viscoelasticity, and proteolytic cleavability. The studies of the individual and combined effects of these parameters on stem cell behavior revealed that human mesenchymal stem cells exhibited increased spreading and Yes-associated protein transcriptional activity in more viscoelastic and cleavable sGAG-IPN hydrogels. Furthermore, human induced pluripotent stem cell (iPSC) cysts displayed enhanced lumen formation, growth, and pluripotency maintenance when cultured in sGAG-IPN hydrogels with higher viscoelasticity. Inhibition studies emphasized the pivotal roles of actin dynamics and matrix metalloproteinase activity in iPSC cyst morphology, which varied with the viscoelastic properties of the hydrogels. Thus, the introduced sGAG-IPN hydrogel platform offers a powerful methodology for exogenous stem cell fate control.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2402656"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Composite Scaffold Materials of Nanocerium Oxide Doped with Allograft Bone: Dual Optimization Based on Anti-Inflammatory Properties and Promotion of Osteogenic Mineralization. 掺杂同种异体骨的纳米氧化铈复合支架材料:基于抗炎特性和促进成骨矿化的双重优化
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-06 DOI: 10.1002/adhm.202403006
Yuqiao Li, Yongkang Huang, Houzhi Yang, Yuxin Li, Gan Luo, Yuan Ma, Haiyang Cheng, Yubin Long, Weiwei Xia, Haiying Liu, Huayi Fang, Yaping Du, Tianwei Sun, Kaifeng Wang, Xinyun Zhai
{"title":"Composite Scaffold Materials of Nanocerium Oxide Doped with Allograft Bone: Dual Optimization Based on Anti-Inflammatory Properties and Promotion of Osteogenic Mineralization.","authors":"Yuqiao Li, Yongkang Huang, Houzhi Yang, Yuxin Li, Gan Luo, Yuan Ma, Haiyang Cheng, Yubin Long, Weiwei Xia, Haiying Liu, Huayi Fang, Yaping Du, Tianwei Sun, Kaifeng Wang, Xinyun Zhai","doi":"10.1002/adhm.202403006","DOIUrl":"https://doi.org/10.1002/adhm.202403006","url":null,"abstract":"<p><p>Spinal fusion technique is widely used in the treatment of lumbar degeneration, cervical instability, disc injury, and spinal deformity. However, it is usually accompanied by a high incidence of fusion failure and pseudoarthrosis, placing higher demands on bone implants. Therefore, materials with good biocompatibility, osteoconductivity, and even induce bone ingrowth, which can be used to improve spinal fusion rate and bone regeneration, have become a hot research topic. Here, ultra-small cerium oxide nanoparticles (CeO<sub>2</sub> NPs) are prepared and loaded onto the surface of the homograft bone surface to prepare a composite scaffold AB@PLGA/CeO<sub>2</sub>. The composite scaffold shows the competitive ability to promote osteoblast differentiation in vitro. In vivo experiments show that AB@PLGA/CeO<sub>2</sub> has a good bone enhancement effect. In particular, good biological effects of collagen fiber formation, osteogenic mineralization, and tissue repair are shown in intervertebral implant fusion. Further, transcriptome sequencing confirms that CeO<sub>2</sub> NPs promote osteogenic differentiation and mineralization by regulating extracellular matrix (ECM) and collagen formation. Meanwhile, CeO<sub>2</sub> NPs can regulate the function of the PI3K-Akt signaling pathway to exert its ability to promote osteogenic differentiation and mineralization and affect p53 and cell cycle signaling pathway to regulate osteogenic differentiation and mineralization. Hence, the proposed scaffold is a promising strategy for intervertebral fusion in the clinic.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403006"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting mRNA-Engineered Monocytes via Prodrug-Like Microspheres for Bone Microenvironment Multi-Phase Remodeling. 通过类原药微球促进 mRNA 工程化单核细胞用于骨微环境多相重塑
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-06 DOI: 10.1002/adhm.202403212
Yuansheng Wu, Yingjie Zhu, Jie Chen, Lili Song, Chunping Wang, Yanglin Wu, Yanyang Chen, Jiancheng Zheng, Yuankun Zhai, Xiang Zhou, Youwen Liu, Yawei Du, Wenguo Cui
{"title":"Boosting mRNA-Engineered Monocytes via Prodrug-Like Microspheres for Bone Microenvironment Multi-Phase Remodeling.","authors":"Yuansheng Wu, Yingjie Zhu, Jie Chen, Lili Song, Chunping Wang, Yanglin Wu, Yanyang Chen, Jiancheng Zheng, Yuankun Zhai, Xiang Zhou, Youwen Liu, Yawei Du, Wenguo Cui","doi":"10.1002/adhm.202403212","DOIUrl":"https://doi.org/10.1002/adhm.202403212","url":null,"abstract":"<p><p>Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system. Then, monocyte-targeting IL-4 mRNA-LNPs are then prepared and integrated into injectable microspheres (mRNA-ICA@GM) via electrostatic and hydrogen bond interactions. After bone-defect injection, LNPs are controlled released from mRNA-ICA@GM within 3 days, rapidly transfecting monocytes for monocyte IL-4 mRNA-engineering, which effectively suppressed acute inflammatory responses via polarization programming and paracrine signaling. Afterwards, ICA is sustainably released as well via cleavable boronate esters across multiple stages, cooperatively boosting the mRNA-engineered monocytes to inhibit coenocytic fusion and osteoclastic function. Both in vitro and in vivo data indicated that mRNA-ICA@GM can not only reverse the inflammatory environment but also suppress monocyte-derived osteoclast formation to accelerate bone repair. In summary, mRNA-engineered monocytes and ICA prodrug-like microspheres are combined to achieve long-lasting multi-stage bone microenvironment regulation, offering a promising repair strategy.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403212"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunometabolic Effect of Nitric Oxide on Human Macrophages Challenged With the SARS-CoV2-Induced Cytokine Storm. A Fluxomic Approach. 一氧化氮对受到 SARS-CoV2 诱导的细胞因子风暴挑战的人类巨噬细胞的免疫代谢作用。通量组学方法。
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-06 DOI: 10.1002/adhm.202401688
Sergio Sánchez-García, Adrián Povo-Retana, Silvia Marin, Sergio Madurga, Marco Fariñas, Nuria Aleixandre, Antonio Castrillo, Juan V de la Rosa, Carlota Alvarez-Lucena, Rodrigo Landauro-Vera, Patricia Prieto, Marta Cascante, Lisardo Boscá
{"title":"Immunometabolic Effect of Nitric Oxide on Human Macrophages Challenged With the SARS-CoV2-Induced Cytokine Storm. A Fluxomic Approach.","authors":"Sergio Sánchez-García, Adrián Povo-Retana, Silvia Marin, Sergio Madurga, Marco Fariñas, Nuria Aleixandre, Antonio Castrillo, Juan V de la Rosa, Carlota Alvarez-Lucena, Rodrigo Landauro-Vera, Patricia Prieto, Marta Cascante, Lisardo Boscá","doi":"10.1002/adhm.202401688","DOIUrl":"https://doi.org/10.1002/adhm.202401688","url":null,"abstract":"<p><p>The cytokine storm associated with SARS-CoV-2 infection is one of the most distinctive pathological signatures in COVID-19 patients. Macrophages respond to this pro-inflammatory challenge by reprogramming their functional and metabolic phenotypes. Interestingly, human macrophages fail to express the inducible form of the NO synthase (NOS2) in response to pro-inflammatory activation and, therefore, NO is not synthesized by these cells. The contribution of exogenously added NO, via a chemical NO-donor, on the immunometabolic changes associated with the cytokine storm is investigated. By using metabolic, transcriptomic, and functional assays the effect of NO in human macrophages is evaluated and found specific responses. Moreover, through integrative fluxomic analysis, pathways modified by NO that contribute to the expression of a particular phenotype in human macrophages are identified, which includes a decrease in mitochondrial respiration and TCA with a slight increase in the glycolytic flux. A significant ROS increase and preserved cell viability are observed in the presence of NO, which may ease the inflammatory response and host defense. Also, NO reverses the cytokine storm-induced itaconate accumulation. These changes offer additional clues to understanding the potential crosstalk between NO and the COVID-19 cytokine storm-dependent signaling pathways.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2401688"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142580867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. 用于癌症治疗的先进纳米材料:金、银和氧化铁纳米粒子在肿瘤学中的应用》(Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications)。
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-06 DOI: 10.1002/adhm.202403059
Priyanka Singh, Santosh Pandit, Sri Renukadevi Balusamy, Mukil Madhusudanan, Hina Singh, H Mohamed Amsath Haseef, Ivan Mijakovic
{"title":"Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.","authors":"Priyanka Singh, Santosh Pandit, Sri Renukadevi Balusamy, Mukil Madhusudanan, Hina Singh, H Mohamed Amsath Haseef, Ivan Mijakovic","doi":"10.1002/adhm.202403059","DOIUrl":"https://doi.org/10.1002/adhm.202403059","url":null,"abstract":"<p><p>Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403059"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Host-Guest Adduct as a Stimuli-Responsive Prodrug: Enzyme-Triggered Self-Assembly Process of a Short Peptide Within Mitochondria to Induce Cell Apoptosis. 作为刺激反应性原药的主客体加合物:线粒体内短肽的酶触发自组装过程诱导细胞凋亡。
IF 1 2区 医学
Advanced Healthcare Materials Pub Date : 2024-11-06 DOI: 10.1002/adhm.202403243
Sandip Sarkar, Atin Chatterjee, Dohyun Kim, Cevella Saritha, Surajit Barman, Batakrishna Jana, Ja-Hyoung Ryu, Amitava Das
{"title":"Host-Guest Adduct as a Stimuli-Responsive Prodrug: Enzyme-Triggered Self-Assembly Process of a Short Peptide Within Mitochondria to Induce Cell Apoptosis.","authors":"Sandip Sarkar, Atin Chatterjee, Dohyun Kim, Cevella Saritha, Surajit Barman, Batakrishna Jana, Ja-Hyoung Ryu, Amitava Das","doi":"10.1002/adhm.202403243","DOIUrl":"10.1002/adhm.202403243","url":null,"abstract":"<p><p>To address the issue of nonspecific biodistribution of a chemotherapeutic drug, stable [2]pseudorotaxane complexes (PK@CAOPP and PR@CAOPP) are used to demonstrate a proof of concept. Cationic -PPh<sub>3</sub> <sup>+</sup> moiety in CAOPP allows specific localization of the PK@CAOPP/ PR@CAOPP in the mitochondrial membrane (MM). Electrostatic interaction between the cationic Lysine<sup>PK</sup> or Arginine<sup>PR</sup> moiety and the negatively charged phosphoester<sup>CAOPP</sup> functionality in CAOPP favours strong adduct formation. The ALP-induced hydrolytic cleavage of the phosphoester moiety in cancer cells triggers dephosphorylation and releases PK/ PR moiety from PK@CAOPP/PR@CAOPP. PK or PR, derived from the Phe-Phe dipeptide, formed fibril-like molecular aggregates in the MM to induce dysfunction, depolarization, ROS generation and apoptotic MCF7 cell death. Such phenomena were not observed in ALP-negative HEK293 normal cells. These propositions were confirmed through control studies using NBDK and PE, other guest molecules. Smaller size and inclusion of the short peptides (PK or PR) within the hydrophobic interior of CAOPP, were attributed to their stability in blood serum. Thus, we have demonstrated the use of supramolecular adducts as a potential therapeutic option for treating cancer cells without affecting healthy cells. The efficacy was also established with an in-vivo MCF7 tumour xenograft model using Balb/c nude mice.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403243"},"PeriodicalIF":10.0,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信