Digital BiomarkersPub Date : 2023-04-28eCollection Date: 2023-01-01DOI: 10.1159/000529685
Leif Simmatis, Saeid Alavi Naeini, Deniz Jafari, Michael Kai Yue Xie, Chelsea Tanchip, Niyousha Taati, Scotia McKinlay, Rupinder Sran, Justin Truong, Diego L Guarin, Babak Taati, Yana Yunusova
{"title":"Analytical Validation of a Webcam-Based Assessment of Speech Kinematics: Digital Biomarker Evaluation following the V3 Framework.","authors":"Leif Simmatis, Saeid Alavi Naeini, Deniz Jafari, Michael Kai Yue Xie, Chelsea Tanchip, Niyousha Taati, Scotia McKinlay, Rupinder Sran, Justin Truong, Diego L Guarin, Babak Taati, Yana Yunusova","doi":"10.1159/000529685","DOIUrl":"10.1159/000529685","url":null,"abstract":"<p><strong>Introduction: </strong>Kinematic analyses have recently revealed a strong potential to contribute to the assessment of neurological diseases. However, the validation of home-based kinematic assessments using consumer-grade video technology has yet to be performed. In line with best practices for digital biomarker development, we sought to validate webcam-based kinematic assessment against established, laboratory-based recording gold standards. We hypothesized that webcam-based kinematics would possess psychometric properties comparable to those obtained using the laboratory-based gold standards.</p><p><strong>Methods: </strong>We collected data from 21 healthy participants who repeated the phrase \"buy Bobby a puppy\" (BBP) at four different combinations of speaking rate and volume: Slow, Normal, Loud, and Fast. We recorded these samples twice back-to-back, simultaneously using (1) an electromagnetic articulography (\"EMA\"; NDI Wave) system, (2) a 3D camera (Intel RealSense), and (3) a 2D webcam for video recording via an in-house developed app. We focused on the extraction of kinematic features in this study, given their demonstrated value in detecting neurological impairments. We specifically extracted measures of speed/acceleration, range of motion (ROM), variability, and symmetry using the movements of the center of the lower lip during these tasks. Using these kinematic features, we derived measures of (1) agreement between recording methods, (2) test-retest reliability of each method, and (3) the validity of webcam recordings to capture expected changes in kinematics as a result of different speech conditions.</p><p><strong>Results: </strong>Kinematics measured using the webcam demonstrated good agreement with both the RealSense and EMA (ICC-A values often ≥0.70). Test-retest reliability, measured using the absolute agreement (2,1) formulation of the intraclass correlation coefficient (i.e., ICC-A), was often \"moderate\" to \"strong\" (i.e., ≥0.70) and similar between the webcam and EMA-based kinematic features. Finally, the webcam kinematics were typically as sensitive to differences in speech tasks as EMA and the 3D camera gold standards.</p><p><strong>Discussion and conclusions: </strong>Our results suggested that webcam recordings display good psychometric properties, comparable to laboratory-based gold standards. This work paves the way for a large-scale clinical validation to continue the development of these promising technologies for the assessment of neurological diseases via home-based methods.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"7 1","pages":"7-17"},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10187538/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9851840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2023-03-29eCollection Date: 2023-01-01DOI: 10.1159/000528874
Gerald Norman Pho, Nina Thigpen, Shyamal Patel, Hal Tily
{"title":"Feasibility of Measuring Physiological Responses to Breakthrough Infections and COVID-19 Vaccine Using a Wearable Ring Sensor.","authors":"Gerald Norman Pho, Nina Thigpen, Shyamal Patel, Hal Tily","doi":"10.1159/000528874","DOIUrl":"10.1159/000528874","url":null,"abstract":"<p><p>Continuous monitoring using commercial-grade wearable technology was used to quantify the physiological response to reported COVID-19 infections and vaccinations in five biometric measurements. Larger responses were observed following confirmed COVID-19 infection reported by unvaccinated versus vaccinated individuals. Responses following reported vaccination were smaller in both magnitude and duration compared to infection and mediated by both dose number and age. Our results suggest commercial-grade wearable technology as a potential platform on which to build screening tools for early detection of illness, including COVID-19 breakthrough cases.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"7 1","pages":"1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062187/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9241869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chakib Battioui, Albert Man, Melissa Pugh, Jian Wang, Xiangnan Dang, Hui Zhang, Paul Ardayfio, Leanne Munsie, Ann Marie Hake, Kevin Biglan
{"title":"Using Clinical Scales and Digital Measures to Explore Falls in Patients with Lewy Body Dementia.","authors":"Chakib Battioui, Albert Man, Melissa Pugh, Jian Wang, Xiangnan Dang, Hui Zhang, Paul Ardayfio, Leanne Munsie, Ann Marie Hake, Kevin Biglan","doi":"10.1159/000529623","DOIUrl":"https://doi.org/10.1159/000529623","url":null,"abstract":"<p><strong>Introduction: </strong>PRESENCE was a phase 2 clinical trial assessing the efficacy of mevidalen, a D1 receptor positive allosteric modulator, for symptomatic treatment of Lewy body dementia (LBD). Mevidalen demonstrated improvements in motor and non-motor features of LBD, global functioning, and actigraphy-measured activity and daytime sleep. Adverse events (AEs) of fall were numerically increased in mevidalen-treated participants.</p><p><strong>Methods: </strong>A subset of PRESENCE participants wore a wrist actigraphy device for 2-week periods pre-, during, and posttreatment. Actigraphy sleep and activity measures were derived per period and analyzed to assess for their association with participants' reports of an AE of fall. Prespecified baseline and treatment-emergent clinical characteristics were also included in the retrospective analysis of falls. Independent-samples <i>t</i> test and χ<sup>2</sup> test were performed to compare the means and proportions between individuals with/without falls.</p><p><strong>Results: </strong>A trend toward more falls was observed with mevidalen treatment (31/258 mevidalen-treated vs. 4/86 in placebo-treated participants: <i>p</i> = 0.12). Higher body mass index (BMI) (<i>p</i> < 0.05), more severe disease measured by baseline Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part II (<i>p</i> < 0.05), and a trend toward improved Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 (ADAS-Cog<sub>13</sub>) (<i>p</i> = 0.06) were associated with individuals with falls. No statistically significant associations with falls and treatment-emergent changes were observed.</p><p><strong>Conclusion: </strong>The association of falls with worse baseline disease severity and higher BMI and overall trend toward improvements on cognitive and motor scales suggest that falls in PRESENCE may be related to increased activity in mevidalen-treated participants at greater risk for falling. Future studies to confirm this hypothesis using fall diaries and digital assessments are necessary.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"7 1","pages":"54-62"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315006/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9857804","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brian Perry, Lindsay Kehoe, Teresa Swezey, Quentin Le Masne, Jörg Goldhahn, Alicia Staley, Amy Corneli
{"title":"How Much Evidence Is Enough? Research Sponsor Experiences Seeking Regulatory Acceptance of Digital Health Technology-Derived Endpoints.","authors":"Brian Perry, Lindsay Kehoe, Teresa Swezey, Quentin Le Masne, Jörg Goldhahn, Alicia Staley, Amy Corneli","doi":"10.1159/000529878","DOIUrl":"https://doi.org/10.1159/000529878","url":null,"abstract":"<p><strong>Introduction: </strong>Digital health technologies (DHTs) provide opportunities for real-time data collection and assessment of patient function. However, use of DHT-derived endpoints in clinical trials to support medical product labelling claims is limited.</p><p><strong>Methods: </strong>From November 2020 through March 2021, the Clinical Trials Transformation Initiative (CTTI) conducted a qualitative descriptive study using semi-structured interviews with sponsors of clinical trials that used DHT-derived endpoints. We aimed to learn about their experiences, including their interactions with regulators and the challenges they encountered. Using applied thematic analysis, we identified barriers to and recommendations for using DHT-derived endpoints in pivotal trials.</p><p><strong>Results: </strong>Sponsors identified five key challenges to incorporating DHT-derived endpoints in clinical trials. These included (1) a need for additional regulatory clarity specific to DHT-derived endpoints, (2) the official clinical outcome assessment qualification process being impractical for the biopharmaceutical industry, (3) a lack of comparator clinical endpoints, (4) a lack of validated DHTs and algorithms for concepts of interest, and (5) a lack of operational support from DHT vendors.</p><p><strong>Discussion/conclusion: </strong>CTTI shared the interview findings with the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) and during a multi-stakeholder expert meeting. Based on these discussions, we provide several new and revised tools to aid sponsors in using DHT-derived endpoints in pivotal trials to support labelling claims.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"7 1","pages":"45-53"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10315005/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9928190","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2022-10-28eCollection Date: 2022-09-01DOI: 10.1159/000526438
Rik Paulus Bernardus Tonino, Mackenzie Tweardy, Stephan Wegerich, Rolf Brouwer, Jaap Jan Zwaginga, Martin Roelof Schipperus
{"title":"Remote Monitoring of Vital and Activity Parameters in Chronic Transfusion-Dependent Patients: A Feasibility Pilot Using Wearable Biosensors.","authors":"Rik Paulus Bernardus Tonino, Mackenzie Tweardy, Stephan Wegerich, Rolf Brouwer, Jaap Jan Zwaginga, Martin Roelof Schipperus","doi":"10.1159/000526438","DOIUrl":"10.1159/000526438","url":null,"abstract":"<p><strong>Introduction: </strong>Little is known if, and to what extent, outpatient red blood cell (RBC) transfusions benefit chronic transfusion-dependent patients. Costs, labour, and potential side effects of RBC transfusions cause a restrictive transfusion strategy to be the standard of care. However, effects on the actual performance and quality of life of patients who require RBCs on a regular basis are hardly studied. The aim of this study was to assess if new technologies and techniques like wearable biosensor devices and web-based testing can be used to measure physiological changes, functional activity, and hence eventually better assess quality of life in a cohort of transfusion-dependent patients.</p><p><strong>Methods: </strong>We monitored 5 patients who regularly receive transfusions during one transfusion cycle with the accelerateIQ biosensor platform, the Withings Steel HR, and web-based cognitive and quality of life testing.</p><p><strong>Results: </strong>Data collection by the deployed devices was shown to be feasible; the AccelerateIQ platform rendered data of which 97.8% was of high quality and usable; of the data the Withings Steel HR rendered, 98.9% was of high quality and usable. Furthermore, heart rate decreased and cognition improved significantly following RBC transfusions. Activity and quality of life measures did not show transfusion-induced changes.</p><p><strong>Conclusion: </strong>In a 5-patient cohort of transfusion-dependent patients, we found that the accelerateIQ, Withings Steel HR, and CANTAB platforms enable acquisition of high-quality data. The collected data suggest that RBC transfusions significantly and reversibly decrease heart rate and increase sustained attention in this cohort. This feasibility study justifies larger validation trials to confirm that these wearables can indeed help to determine personalized RBC transfusion strategies and thus optimization of each patient's quality of life.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"6 3","pages":"117-126"},"PeriodicalIF":0.0,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1c/81/dib-0006-0117.PMC9710428.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35253953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2022-09-30eCollection Date: 2022-09-01DOI: 10.1159/000526471
Johannes Tröger, Ebru Baykara, Jian Zhao, Daphne Ter Huurne, Nina Possemis, Elisa Mallick, Simona Schäfer, Louisa Schwed, Mario Mina, Nicklas Linz, Inez Ramakers, Craig Ritchie
{"title":"Validation of the Remote Automated ki:e Speech Biomarker for Cognition in Mild Cognitive Impairment: Verification and Validation following DiME V3 Framework.","authors":"Johannes Tröger, Ebru Baykara, Jian Zhao, Daphne Ter Huurne, Nina Possemis, Elisa Mallick, Simona Schäfer, Louisa Schwed, Mario Mina, Nicklas Linz, Inez Ramakers, Craig Ritchie","doi":"10.1159/000526471","DOIUrl":"https://doi.org/10.1159/000526471","url":null,"abstract":"<p><strong>Introduction: </strong>Progressive cognitive decline is the cardinal behavioral symptom in most dementia-causing diseases such as Alzheimer's disease. While most well-established measures for cognition might not fit tomorrow's decentralized remote clinical trials, digital cognitive assessments will gain importance. We present the evaluation of a novel digital speech biomarker for cognition (SB-C) following the Digital Medicine Society's V3 framework: verification, analytical validation, and clinical validation.</p><p><strong>Methods: </strong>Evaluation was done in two independent clinical samples: the Dutch DeepSpA (<i>N</i> = 69 subjective cognitive impairment [SCI], <i>N</i> = 52 mild cognitive impairment [MCI], and <i>N</i> = 13 dementia) and the Scottish SPeAk datasets (<i>N</i> = 25, healthy controls). For validation, two anchor scores were used: the Mini-Mental State Examination (MMSE) and the Clinical Dementia Rating (CDR) scale.</p><p><strong>Results: </strong><i>Verification</i>: The SB-C could be reliably extracted for both languages using an automatic speech processing pipeline. <i>Analytical Validation</i>: In both languages, the SB-C was strongly correlated with MMSE scores. <i>Clinical Validation:</i> The SB-C significantly differed between clinical groups (including MCI and dementia), was strongly correlated with the CDR, and could track the clinically meaningful decline.</p><p><strong>Conclusion: </strong>Our results suggest that the ki:e SB-C is an objective, scalable, and reliable indicator of cognitive decline, fit for purpose as a remote assessment in clinical early dementia trials.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"6 3","pages":"107-116"},"PeriodicalIF":0.0,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/22/f9/dib-0006-0107.PMC9710455.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35345246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2022-09-12eCollection Date: 2022-09-01DOI: 10.1159/000525888
Luke Scheuer, John Torous
{"title":"Usable Data Visualization for Digital Biomarkers: An Analysis of Usability, Data Sharing, and Clinician Contact.","authors":"Luke Scheuer, John Torous","doi":"10.1159/000525888","DOIUrl":"https://doi.org/10.1159/000525888","url":null,"abstract":"<p><strong>Background: </strong>While digital phenotyping smartphone apps can collect vast amounts of information on participants, less is known about how these data can be shared back. Data visualization is critical to ensuring applications of digital signals and biomarkers are more informed, ethical, and impactful. But little is known about how sharing of these data, especially at different levels from raw data through proposed biomarkers, impacts patients' perceptions.</p><p><strong>Methods: </strong>We compared five different graphs generated from data created by the open source mindLAMP app that reflected different ways to share data, from raw data through digital biomarkers and correlation matrices. All graphs were shown to 28 participants, and the graphs' usability was measured via the System Usability Scale (SUS). Additionally, participants were asked about their comfort sharing different kinds of data, administered the Digital Working Alliance Inventory (D-WAI), and asked if they would want to use these visualizations with care providers.</p><p><strong>Results: </strong>Of the five graphs shown to participants, the graph visualizing change in survey responses over the course of a week received the highest usability score, with the graph showing multiple metrics changing over a week receiving the lowest usability score. Participants were significantly more likely to be willing to share Global Positioning System data after viewing the graphs, and 25 of 28 participants agreed that they would like to use these graphs to communicate with their clinician.</p><p><strong>Discussion/conclusions: </strong>Data visualizations can help participants and patients understand digital biomarkers and increase trust in how they are created. As digital biomarkers become more complex, simple visualizations may fail to capture their multiple dimensions, and new interactive data visualizations may be necessary to help realize their full value.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"6 3","pages":"98-106"},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/0e/27/dib-0006-0098.PMC9719035.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35255893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2022-08-29eCollection Date: 2022-09-01DOI: 10.1159/000525897
Bohdana Ratitch, Isaac R Rodriguez-Chavez, Abhishek Dabral, Adriano Fontanari, Julio Vega, Francesco Onorati, Benjamin Vandendriessche, Stuart Morton, Yasaman Damestani
{"title":"Considerations for Analyzing and Interpreting Data from Biometric Monitoring Technologies in Clinical Trials.","authors":"Bohdana Ratitch, Isaac R Rodriguez-Chavez, Abhishek Dabral, Adriano Fontanari, Julio Vega, Francesco Onorati, Benjamin Vandendriessche, Stuart Morton, Yasaman Damestani","doi":"10.1159/000525897","DOIUrl":"https://doi.org/10.1159/000525897","url":null,"abstract":"<p><strong>Background: </strong>The proliferation and increasing maturity of biometric monitoring technologies allow clinical investigators to measure the health status of trial participants in a more holistic manner, especially outside of traditional clinical settings. This includes capturing meaningful aspects of health in daily living and a more granular and objective manner compared to traditional tools in clinical settings.</p><p><strong>Summary: </strong>Within multidisciplinary teams, statisticians and data scientists are increasingly involved in clinical trials that incorporate digital clinical measures. They are called upon to provide input into trial planning, generation of evidence on the clinical validity of novel clinical measures, and evaluation of the adequacy of existing evidence. Analysis objectives related to demonstrating clinical validity of novel clinical measures differ from typical objectives related to demonstrating safety and efficacy of therapeutic interventions using established measures which statisticians are most familiar with.</p><p><strong>Key messages: </strong>This paper discusses key considerations for generating evidence for clinical validity through the lens of the type and intended use of a clinical measure. This paper also briefly discusses the regulatory pathways through which clinical validity evidence may be reviewed and highlights challenges that investigators may encounter while dealing with data from biometric monitoring technologies.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"6 3","pages":"83-97"},"PeriodicalIF":0.0,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/62/9e/dib-0006-0083.PMC9716191.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"35345247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2022-07-21eCollection Date: 2022-01-01DOI: 10.1159/000525698
Leif Simmatis, Carolina Barnett, Reeman Marzouqah, Babak Taati, Mark Boulos, Yana Yunusova
{"title":"Reliability of Automatic Computer Vision-Based Assessment of Orofacial Kinematics for Telehealth Applications.","authors":"Leif Simmatis, Carolina Barnett, Reeman Marzouqah, Babak Taati, Mark Boulos, Yana Yunusova","doi":"10.1159/000525698","DOIUrl":"https://doi.org/10.1159/000525698","url":null,"abstract":"<p><strong>Introduction: </strong>Telehealth/remote assessment using readily available 2D mobile cameras and deep learning-based analyses is rapidly becoming a viable option for detecting orofacial and speech impairments associated with neurological and neurodegenerative disease during telehealth practice. However, the psychometric properties (e.g., internal consistency and reliability) of kinematics obtained from these systems have not been established, which is a crucial next step before their clinical usability is established.</p><p><strong>Methods: </strong>Participants were assessed in lab using a 3 dimensional (3D)-capable camera and at home using a readily-available 2D camera in a tablet. Orofacial kinematics was estimated from videos using a deep facial landmark tracking model. Kinematic features quantified the clinically relevant constructs of velocity, range of motion, and lateralization. In lab, all participants performed the same oromotor task. At home, participants were split into two groups that each performed a variant of the in-lab task. We quantified within-assessment consistency (Cronbach's α), reliability (intraclass correlation coefficient [ICC]), and fitted linear mixed-effects models to at-home data to capture individual-/task-dependent longitudinal trajectories.</p><p><strong>Results: </strong>Both in lab and at home, Cronbach's α was typically high (>0.80) and ICCs were often good (>0.70). The linear mixed-effect models that best fit the longitudinal data were those that accounted for individual- or task-dependent effects.</p><p><strong>Discussion: </strong>Remotely gathered orofacial kinematics were as internally consistent and reliable as those gathered in a controlled laboratory setting using a high-performance 3D-capable camera and could additionally capture individual- or task-dependent changes over time. These results highlight the potential of remote assessment tools as digital biomarkers of disease status and progression and demonstrate their suitability for novel telehealth applications.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"6 2","pages":"71-82"},"PeriodicalIF":0.0,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c1/96/dib-0006-0071.PMC9574208.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40644965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital BiomarkersPub Date : 2022-07-04eCollection Date: 2022-05-01DOI: 10.1159/000525080
Charmaine Demanuele, Cynthia Lokker, Krishna Jhaveri, Pirinka Georgiev, Emre Sezgin, Cindy Geoghegan, Kelly H Zou, Elena Izmailova, Marie McCarthy
{"title":"Considerations for Conducting Bring Your Own \"Device\" (BYOD) Clinical Studies.","authors":"Charmaine Demanuele, Cynthia Lokker, Krishna Jhaveri, Pirinka Georgiev, Emre Sezgin, Cindy Geoghegan, Kelly H Zou, Elena Izmailova, Marie McCarthy","doi":"10.1159/000525080","DOIUrl":"https://doi.org/10.1159/000525080","url":null,"abstract":"<p><strong>Background: </strong>Digital health technologies are attracting attention as novel tools for data collection in clinical research. They present alternative methods compared to in-clinic data collection, which often yields snapshots of the participants' physiology, behavior, and function that may be prone to biases and artifacts, e.g., white coat hypertension, and not representative of the data in free-living conditions. Modern digital health technologies equipped with multi-modal sensors combine different data streams to derive comprehensive endpoints that are important to study participants and are clinically meaningful. Used for data collection in clinical trials, they can be deployed as provisioned products where technology is given at study start or in a bring your own \"device\" (BYOD) manner where participants use their technologies to generate study data.</p><p><strong>Summary: </strong>The BYOD option has the potential to be more user-friendly, allowing participants to use technologies that they are familiar with, ensuring better participant compliance, and potentially reducing the bias that comes with introducing new technologies. However, this approach presents different technical, operational, regulatory, and ethical challenges to study teams. For example, BYOD data can be more heterogeneous, and recruiting historically underrepresented populations with limited access to technology and the internet can be challenging. Despite the rapid increase in digital health technologies for clinical and healthcare research, BYOD use in clinical trials is limited, and regulatory guidance is still evolving.</p><p><strong>Key messages: </strong>We offer considerations for academic researchers, drug developers, and patient advocacy organizations on the design and deployment of BYOD models in clinical research. These considerations address: (1) early identification and engagement with internal and external stakeholders; (2) study design including informed consent and recruitment strategies; (3) outcome, endpoint, and technology selection; (4) data management including compliance and data monitoring; (5) statistical considerations to meet regulatory requirements. We believe that this article acts as a primer, providing insights into study design and operational requirements to ensure the successful implementation of BYOD clinical studies.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":" ","pages":"47-60"},"PeriodicalIF":0.0,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/c6/02/dib-0006-0047.PMC9294934.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40616532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}