Gerald Norman Pho, Nina Thigpen, Shyamal Patel, Hal Tily
{"title":"使用可穿戴环形传感器测量对突破性感染和 COVID-19 疫苗的生理反应的可行性。","authors":"Gerald Norman Pho, Nina Thigpen, Shyamal Patel, Hal Tily","doi":"10.1159/000528874","DOIUrl":null,"url":null,"abstract":"<p><p>Continuous monitoring using commercial-grade wearable technology was used to quantify the physiological response to reported COVID-19 infections and vaccinations in five biometric measurements. Larger responses were observed following confirmed COVID-19 infection reported by unvaccinated versus vaccinated individuals. Responses following reported vaccination were smaller in both magnitude and duration compared to infection and mediated by both dose number and age. Our results suggest commercial-grade wearable technology as a potential platform on which to build screening tools for early detection of illness, including COVID-19 breakthrough cases.</p>","PeriodicalId":11242,"journal":{"name":"Digital Biomarkers","volume":"7 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062187/pdf/","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Measuring Physiological Responses to Breakthrough Infections and COVID-19 Vaccine Using a Wearable Ring Sensor.\",\"authors\":\"Gerald Norman Pho, Nina Thigpen, Shyamal Patel, Hal Tily\",\"doi\":\"10.1159/000528874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Continuous monitoring using commercial-grade wearable technology was used to quantify the physiological response to reported COVID-19 infections and vaccinations in five biometric measurements. Larger responses were observed following confirmed COVID-19 infection reported by unvaccinated versus vaccinated individuals. Responses following reported vaccination were smaller in both magnitude and duration compared to infection and mediated by both dose number and age. Our results suggest commercial-grade wearable technology as a potential platform on which to build screening tools for early detection of illness, including COVID-19 breakthrough cases.</p>\",\"PeriodicalId\":11242,\"journal\":{\"name\":\"Digital Biomarkers\",\"volume\":\"7 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10062187/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Biomarkers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000528874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Biomarkers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000528874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Feasibility of Measuring Physiological Responses to Breakthrough Infections and COVID-19 Vaccine Using a Wearable Ring Sensor.
Continuous monitoring using commercial-grade wearable technology was used to quantify the physiological response to reported COVID-19 infections and vaccinations in five biometric measurements. Larger responses were observed following confirmed COVID-19 infection reported by unvaccinated versus vaccinated individuals. Responses following reported vaccination were smaller in both magnitude and duration compared to infection and mediated by both dose number and age. Our results suggest commercial-grade wearable technology as a potential platform on which to build screening tools for early detection of illness, including COVID-19 breakthrough cases.