{"title":"Characterization of NK-lysin A, a potent antimicrobial peptide from the zebrafish Danio rerio","authors":"Marius Ortjohann, Matthias Leippe","doi":"10.1016/j.dci.2024.105266","DOIUrl":"10.1016/j.dci.2024.105266","url":null,"abstract":"<div><div>Antimicrobial peptides (AMPs) are important players of the innate immune system with a major role in the defense against invading pathogens. AMPs belonging to the family of saposin-like proteins (SAPLIPs) include the porcine NK-lysin and the human granulysin. In the zebrafish <em>Danio rerio</em>, transcript analyses of NK-lysin encoding genes have been reported, but biochemical characterizations at the protein level are missing so far. Here, we present the recombinant expression, purification, and characterization of one of these homologs, namely of NK-lysin A (DaNKlA). To remove the affinity tag from DaNKlA, we made use of a self-splicing intein. Recombinant DaNKlA depolarized liposomes over a broad pH range and showed a preference for negatively charged lipids. DaNKlA inhibited the growth of and killed different Gram-positive and Gram-negative bacteria, including the fish pathogenic bacterium <em>Vibrio anguillarum</em>, by membrane permeabilization but displayed substantially lower activity against yeast cells. Structural modelling and bioinformatic comparison of DaNKlA with characterized SAPLIPs suggest membrane destabilization accompanied by strong electrostatic interactions as the mode of action.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105266"},"PeriodicalIF":2.7,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0145305X24001381/pdfft?md5=795ad678195bbad403111190dad15cc0&pid=1-s2.0-S0145305X24001381-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination","authors":"SiouNing Aileen See , Subha Bhassu , Swee Seong Tang , Khatijah Yusoff","doi":"10.1016/j.dci.2024.105264","DOIUrl":"10.1016/j.dci.2024.105264","url":null,"abstract":"<div><div>White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to <em>Litopenaeus vannamei</em> shrimps at various dosages to access their safety and the shrimps’ immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.</div></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105264"},"PeriodicalIF":2.7,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhihang Zhu , Wei Shi , Fang Li , Min Zhang , Kui Luo , Difei Tong , Yingying Yu , Xunyi Zhang , Lingzheng Lu , Maocang Yan
{"title":"Studies on immunological characteristics and transcriptomic analysis of Litopenaeus vannamei low salt-tolerance family","authors":"Zhihang Zhu , Wei Shi , Fang Li , Min Zhang , Kui Luo , Difei Tong , Yingying Yu , Xunyi Zhang , Lingzheng Lu , Maocang Yan","doi":"10.1016/j.dci.2024.105265","DOIUrl":"10.1016/j.dci.2024.105265","url":null,"abstract":"<div><p><em>Litopenaeus vannamei</em> is a widely distributed euryhaline aquatic animal, affected by low salinity, which can impact its disease resistance and immunity. However, there is a limited understanding of the adaptation mechanisms of <em>L</em>. <em>vannamei</em> with different genetic backgrounds to low salinity. Therefore, the present study aimed to compare the immunity characteristics and transcriptomics of <em>L</em>. <em>vannamei</em> low salt-tolerant (FG I/J) and low salt-sensitive (control) families. Also, the disease resistance and immune parameters (including [THC], hemolymph cell viability, lysozyme activity [LZM], phenoloxidase content [PO], interleukin-6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) of the FG I/J and control families of <em>L</em>. <em>vannamei</em> under low salinity (5‰) and ambient salinity (24‰) were examined. Additionally, hepatopancreas transcriptomics of the FG I/J and control families were analyzed at a salinity of 5‰. The results showed that the FG I/J family had higher disease resistance to <em>Vibrio parahaemolyticus</em> and stronger immunological capacity than the control family. Transcriptomic analysis showed significantly enriched energy metabolism and immune regulation pathways. Therefore, we speculated that energy metabolism provides sufficient energy for immunological modulation in the FG I/J family to deal with long-term low-salt stress and achieve high growth and survival rates.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"161 ","pages":"Article 105265"},"PeriodicalIF":2.7,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min-Young Sohn , Ji-Min Jeong , Gyoungsik Kang , Won-Sik Woo , Kyung-Ho Kim , Ha-Jeong Son , Min-Soo Joo , Chan-Il Park
{"title":"Oral administration enhances directly mucosal immune system in intestine of olive flounder (Paralichthys olivaceus)","authors":"Min-Young Sohn , Ji-Min Jeong , Gyoungsik Kang , Won-Sik Woo , Kyung-Ho Kim , Ha-Jeong Son , Min-Soo Joo , Chan-Il Park","doi":"10.1016/j.dci.2024.105262","DOIUrl":"10.1016/j.dci.2024.105262","url":null,"abstract":"<div><p>Aquaculture is notably vulnerable to diseases, with <em>Edwardsiella tarda</em> causing significant mortality across various commercially important fish species in both freshwater and marine environments. In the aquaculture industry, sustainable disease control hinges on the effective development of vaccines. Oral vaccines present an appealing approach to immunization in fish due to their ease of antigen administration, reduced stress compared to non-oral delivery methods, and their potential applicability to both small and large finfish species. In mammals, the exposure of mucosal surfaces to antigens results in the secretion of antigen-specific IgA at these locations. Mammals have a common mucosal immune system, in which stimulation of one epithelium can also give rise to specific IgA or IgM responses in other mucosal organs. Mucosal immunoglobulins are particularly important in developing vaccines that provide mucosal immunity. However, it remains unclear whether fish share a common mucosal system. Moreover, neither Peyer's patches nor intestinal lymph nodes were identified. Nevertheless, oral vaccination remains an attractive method for inducing immunity. We investigated whether the activation of the mucosal immune response was induced by direct injection of the antigen. After oral antigen administration, antigen-specific antibody titers increased in the experimental group (<em>E. tarda</em> FKC vaccine). In the challenge experiment, the cumulative survival rate was 72% (<em>E. tarda</em>). This suggests that oral administration of antigens can activate intestinal mucosal immunity in flounders. Additionally, these results help understand the intestinal mucosal immune system of teleost fish. In the future, research on the signaling mechanisms of these genes is expected to provide helpful information for developing vaccine adjuvants.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"162 ","pages":"Article 105262"},"PeriodicalIF":2.7,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xuan Wei , Jianxiong Wu , Xiangyu Pi , Qihuan Zhang , Jingyu Tian , Zhitao Qi
{"title":"Characterization of NLRP3 inflammasome components in the endangered Chinese giant salamander (Andrias davidianus)","authors":"Xuan Wei , Jianxiong Wu , Xiangyu Pi , Qihuan Zhang , Jingyu Tian , Zhitao Qi","doi":"10.1016/j.dci.2024.105263","DOIUrl":"10.1016/j.dci.2024.105263","url":null,"abstract":"<div><p>Chinese giant salamander (<em>Andrias davidianus</em>) is the largest extant urodela species and has unique evolutionary position. Studying the immune system of Chinese giant salamander contributes to understanding the evolution of immune systems of vertebrates. The NLR-related protein 3 (NLRP3) inflammasome comprised of NLRP3, ASC and caspase-1 play important roles in the host innate immunity. However, little is know about the NLRP3 inflammasome components in Chinese giant salamander. In this study, the NLRP3, apoptosis-associated speck-like protein (ASC) and caspase-1 (adaNLRP3, adaASC and adaCaspase-1) were characterized from Chinese giant salamander. The proteins of these three genes shared similar motifs and structures with their mammalian counterparts, with a PYD motif, a nucleotide-binding domain (NACHT) motif, and four leucine-rich repeat domain (LRR) motifs identified in adaNLRP3, a pyrin domain (PYD) motif and a caspase recruitment domain (CARD) motif in adaASC, and a CARD motif and a CASc motif in adaCaspase-1. These three genes were constitutively expressed in the skin, heart, lung, kidney, muscle, brain, spleen, and liver of Chinese giant salamander. Following <em>Aeromonas hydrophia</em> infection, all the three genes were up-regulated in various tissues. Molecular docking analysis revealed that the key residues involved in forming the adaNLRP3/adaASC complex were located in the PYD motifs, and that involved in forming the adaASC/adaCaspase-1 complex were located in the CARD motifs. Further analysis revealed that the hydrogen bonds and salt bridges had crucial roles in the formation of adaNLRP3/acaASC and adaASC/adaCaspase-1 complexes. To the best of our knowledge, this is the first report on the NLRP3 inflammasome components in Chinese giant salamander which will be helpful in further understanding the function of the NLRP3 inflammasome and in elucidating its role in the immune response to microbes.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"161 ","pages":"Article 105263"},"PeriodicalIF":2.7,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142196888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Avinash Premraj, Abi George Aleyas, Binita Nautiyal, Thaha Jamal Rasool
{"title":"First report of a chemokine from camelids: Dromedary CXCL8 is induced by poxvirus and heavy metal toxicity","authors":"Avinash Premraj, Abi George Aleyas, Binita Nautiyal, Thaha Jamal Rasool","doi":"10.1016/j.dci.2024.105261","DOIUrl":"10.1016/j.dci.2024.105261","url":null,"abstract":"<div><p>Low molecular weight proteins, known as chemokines, facilitate the migration and localization of immune cells to the site of infection and injury. One of the first chemokines identified, CXCL8 functions as a key neutrophil activator, recruiting neutrophils to sites of inflammation. Several viral infections, including zoonotic coronaviruses and poxviruses, have been reported to induce the expression of CXCL8. Dromedary camels are known to harbor several potentially zoonotic pathogens, but critical immune molecules such as chemokines remain unidentified. We report here the identification of CXCL8 from the dromedary camel - the first chemokine identified from camelids. The complete dromedary CXCL8 cDNA sequence as well as the corresponding gene sequence from dromedary and two New World camelids - alpaca and llama were cloned. CXCL8 mRNA expression was relatively higher in PBMC, spleen, lung, intestine, and liver. Poly(I:C) and lipopolysaccharide stimulated CXCL8 expression <em>in vitro</em>, while interferon treatment inhibited it. <em>In vitro</em> infection with potentially zoonotic camelpox virus induced the expression of CXCL8 in camel kidney cells. Toxicological studies on camelids have been limited, and no biomarkers have been identified. Hence, we also evaluated CXCL8 mRNA expression as a potential biomarker to assess heavy metal toxicity in camel kidney cells <em>in vitro</em>. CXCL8 expression was increased after <em>in vitro</em> exposure to heavy metal compounds of cobalt and cadmium, suggesting potential utility as a biomarker for renal toxicity in camels. The results of our study demonstrate that camel CXCL8 plays a significant role in immunomodulatory and induced toxicity responses in dromedary camels.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"161 ","pages":"Article 105261"},"PeriodicalIF":2.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142145374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancement of immunity and disease resistance in Litopenaeus vannamei through injection of tyramine formulated with polyethylene glycol","authors":"Cheng-Ying Li , Hsin-Wei Kuo , Winton Cheng","doi":"10.1016/j.dci.2024.105260","DOIUrl":"10.1016/j.dci.2024.105260","url":null,"abstract":"<div><p>This study investigates the prolonged effect of immune disease resistance in <em>Litopenaeus vannamei</em> through the administration of tyramine (TA) formulated with polyethylene glycol (PEG). Facing the challenges of intensive farming, environmental stress, and global climate changes, innovative approaches to improve shrimp health are essential. The research focuses on the role of biogenic amines in stress response and immune regulation, demonstrating that TA, especially when combined with PEG, significantly prolongs immunity and resistance against <em>Vibrio alginolyticus</em>. The experimental design included administering TA, PEG, and TA-PEG, followed by evaluations of immunity, lactate and glucose levels, and immune-related gene expressions. Results showed notable prolonged effects in total hemocyte count, phenoloxidase activity, and phagocytic activity in the TA-PEG group, indicating enhanced immune activation period. Additionally, the expression of prophenoloxidase system-related genes was significantly upregulated in the TA-PEG group. Furthermore, the TA-PEG group exhibited a significantly higher survival rate in a susceptibility test against <em>V. alginolyticus</em>. The results of this study confirm that the combined use of PEG can effectively extend the immunostimulatory duration of TA.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"161 ","pages":"Article 105260"},"PeriodicalIF":2.7,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142139592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The bright future of developmental and comparative immunology: Views from heroes of the field","authors":"Martin F. Flajnik","doi":"10.1016/j.dci.2024.105257","DOIUrl":"10.1016/j.dci.2024.105257","url":null,"abstract":"","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"161 ","pages":"Article 105257"},"PeriodicalIF":2.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105381","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
José Gabriel Gonçalves Lins , Ana Cláudia A. Albuquerque , Helder Louvandini , Alessandro F.T. Amarante
{"title":"Immunohistochemistry analyses of the abomasal mucosa show differences in cellular-mediated immune responses to Haemonchus contortus infection in resistant and susceptible young lambs","authors":"José Gabriel Gonçalves Lins , Ana Cláudia A. Albuquerque , Helder Louvandini , Alessandro F.T. Amarante","doi":"10.1016/j.dci.2024.105259","DOIUrl":"10.1016/j.dci.2024.105259","url":null,"abstract":"<div><p><em>Haemonchus contortus</em> is known for its high pathogenicity in sheep, and the uncontrolled use of anthelmintics resulted in the emergence of multiple drug-resistant populations. Breeding sheep for gastrointestinal nematode resistance is a sustainable alternative to reduce dependence of anthelmintic drugs, and differences in the degree of resistance between breeds have been reported. Here we compare two sheep breeds (Santa Ines and Ile de France), concerning the differences in innate and adaptive immune response involved in the resistance against <em>H. contortus</em> infection. Immunohistochemical analyses of the abomasum were conducted in naïve Santa Ines (n = 14) and Ile de France (n = 12) lambs randomized into four groups: infected Santa Ines (n = 8), non-infected control Santa Ines (n = 6), infected Ile de France (n = 8), and non-infected control Ile de France (n = 4). The infected lambs were initially infected with <em>H. contortus</em> infective larvae at 14 days of age, and multiple infections were conducted every second day until they reached 66 days of age. There was a significant effect (P < 0.001) of the infection with increase in numbers of CD3<sup>+</sup> T; CD79α+ B; GATA3+ Th2/ILC2; POU2F3+ tuft cells; FOXP3+ T reg; and IgE + cells in the fundus of the abomasal mucosa in both Santa Ines and Ile de France lambs. Nevertheless, the infected Santa Ines lambs presented the highest averages for CD79α+ B; GATA3+ Th2/ILC; IgE + cells; and POU2F3+ tuft cells and there was a significant association of the breed and infection status with regards to POU2F3+ tuft cells, with the highest mean in the infected Santa Ines group. The infected Santa Ines group had three lambs with high degree of resistance and five lambs that showed a moderate infection. Our results suggest a mechanism of synergistic coordination between different immune-cell types in promoting resistance of suckling lambs under <em>H. contortus</em> infection.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"161 ","pages":"Article 105259"},"PeriodicalIF":2.7,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A personal view on developmental and comparative immunology: What, how and why?","authors":"Jim Kaufman","doi":"10.1016/j.dci.2024.105258","DOIUrl":"10.1016/j.dci.2024.105258","url":null,"abstract":"<div><p>What are the future directions of the fields of developmental and comparative immunology? In thinking through this question as I write, I find myself marvelling at the very long ways that we have come since I began as a PhD student some 50 years ago. I think that we cannot know what technical and theoretical advances will emerge in the future, nor will our initial aims survive the realities of what appears in our sights, often from unexpected directions. I feel that we should not allow what we already know about some well-studied systems to blind us to the wide range of possibilities, and that remaining a humble seeker helps the uptake of new realities. Finally, it would be good to try answering the whole range of questions about developmental and comparative immunology, from what to how to why.</p></div>","PeriodicalId":11228,"journal":{"name":"Developmental and comparative immunology","volume":"161 ","pages":"Article 105258"},"PeriodicalIF":2.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0145305X24001307/pdfft?md5=7d9bbe4febd75389216643f4ccf96d1f&pid=1-s2.0-S0145305X24001307-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}