Zhihang Zhu , Wei Shi , Fang Li , Min Zhang , Kui Luo , Difei Tong , Yingying Yu , Xunyi Zhang , Lingzheng Lu , Maocang Yan
{"title":"Studies on immunological characteristics and transcriptomic analysis of Litopenaeus vannamei low salt-tolerance family","authors":"Zhihang Zhu , Wei Shi , Fang Li , Min Zhang , Kui Luo , Difei Tong , Yingying Yu , Xunyi Zhang , Lingzheng Lu , Maocang Yan","doi":"10.1016/j.dci.2024.105265","DOIUrl":null,"url":null,"abstract":"<div><p><em>Litopenaeus vannamei</em> is a widely distributed euryhaline aquatic animal, affected by low salinity, which can impact its disease resistance and immunity. However, there is a limited understanding of the adaptation mechanisms of <em>L</em>. <em>vannamei</em> with different genetic backgrounds to low salinity. Therefore, the present study aimed to compare the immunity characteristics and transcriptomics of <em>L</em>. <em>vannamei</em> low salt-tolerant (FG I/J) and low salt-sensitive (control) families. Also, the disease resistance and immune parameters (including [THC], hemolymph cell viability, lysozyme activity [LZM], phenoloxidase content [PO], interleukin-6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) of the FG I/J and control families of <em>L</em>. <em>vannamei</em> under low salinity (5‰) and ambient salinity (24‰) were examined. Additionally, hepatopancreas transcriptomics of the FG I/J and control families were analyzed at a salinity of 5‰. The results showed that the FG I/J family had higher disease resistance to <em>Vibrio parahaemolyticus</em> and stronger immunological capacity than the control family. Transcriptomic analysis showed significantly enriched energy metabolism and immune regulation pathways. Therefore, we speculated that energy metabolism provides sufficient energy for immunological modulation in the FG I/J family to deal with long-term low-salt stress and achieve high growth and survival rates.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0145305X2400137X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Litopenaeus vannamei is a widely distributed euryhaline aquatic animal, affected by low salinity, which can impact its disease resistance and immunity. However, there is a limited understanding of the adaptation mechanisms of L. vannamei with different genetic backgrounds to low salinity. Therefore, the present study aimed to compare the immunity characteristics and transcriptomics of L. vannamei low salt-tolerant (FG I/J) and low salt-sensitive (control) families. Also, the disease resistance and immune parameters (including [THC], hemolymph cell viability, lysozyme activity [LZM], phenoloxidase content [PO], interleukin-6 [IL-6], and tumor necrosis factor-alpha [TNF-α]) of the FG I/J and control families of L. vannamei under low salinity (5‰) and ambient salinity (24‰) were examined. Additionally, hepatopancreas transcriptomics of the FG I/J and control families were analyzed at a salinity of 5‰. The results showed that the FG I/J family had higher disease resistance to Vibrio parahaemolyticus and stronger immunological capacity than the control family. Transcriptomic analysis showed significantly enriched energy metabolism and immune regulation pathways. Therefore, we speculated that energy metabolism provides sufficient energy for immunological modulation in the FG I/J family to deal with long-term low-salt stress and achieve high growth and survival rates.