Liqing Zang, Sei Saitoh, Kan Katayama, Weibin Zhou, Norihiro Nishimura, Yasuhito Shimada
{"title":"A zebrafish model of diabetic nephropathy shows hyperglycemia, proteinuria and activation of the PI3K/Akt pathway.","authors":"Liqing Zang, Sei Saitoh, Kan Katayama, Weibin Zhou, Norihiro Nishimura, Yasuhito Shimada","doi":"10.1242/dmm.050438","DOIUrl":"10.1242/dmm.050438","url":null,"abstract":"<p><p>Diabetic nephropathy (DN), as a complication of diabetes, is a substantial healthcare challenge owing to the high risk of morbidity and mortality involved. Although significant progress has been made in understanding the pathogenesis of DN, more efficient models are required to develop new therapeutics. Here, we created a DN model in zebrafish by crossing diabetic Tg(acta1:dnIGF1R-EGFP) and proteinuria-tracing Tg(l-fabp::VDBP-GFP) lines, named zMIR/VDBP. Overfed adult zMIR/VDBP fish developed severe hyperglycemia and proteinuria, which were not observed in wild-type zebrafish. Renal histopathology revealed human DN-like characteristics, such as glomerular basement membrane thickening, foot process effacement and glomerular sclerosis. Glomerular dysfunction was restored upon calorie restriction. RNA sequencing analysis demonstrated that DN zebrafish kidneys exhibited transcriptional patterns similar to those seen in human DN pathogenesis. Notably, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated, a phenomenon observed in the early phase of human DN. In addition, metformin improved hyperglycemia and proteinuria in DN zebrafish by modulating Akt phosphorylation. Our results indicate that zMIR/VDBP fish are suitable for elucidating the mechanisms underlying human DN and could be a powerful tool for therapeutic discovery.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140921330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Helen Rankin Willsey, Eleanor G Seaby, Annie Godwin, Sarah Ennis, Matthew Guille, Robert M Grainger
{"title":"Modelling human genetic disorders in Xenopus tropicalis.","authors":"Helen Rankin Willsey, Eleanor G Seaby, Annie Godwin, Sarah Ennis, Matthew Guille, Robert M Grainger","doi":"10.1242/dmm.050754","DOIUrl":"10.1242/dmm.050754","url":null,"abstract":"<p><p>Recent progress in human disease genetics is leading to rapid advances in understanding pathobiological mechanisms. However, the sheer number of risk-conveying genetic variants being identified demands in vivo model systems that are amenable to functional analyses at scale. Here we provide a practical guide for using the diploid frog species Xenopus tropicalis to study many genes and variants to uncover conserved mechanisms of pathobiology relevant to human disease. We discuss key considerations in modelling human genetic disorders: genetic architecture, conservation, phenotyping strategy and rigour, as well as more complex topics, such as penetrance, expressivity, sex differences and current challenges in the field. As the patient-driven gene discovery field expands significantly, the cost-effective, rapid and higher throughput nature of Xenopus make it an essential member of the model organism armamentarium for understanding gene function in development and in relation to disease.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11179720/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DMM Outstanding Paper Prize 2023 winners: Lídia Faria, Ffion R. Hammond and Amy Lewis.","authors":"Rachel Hackett","doi":"10.1242/dmm.050893","DOIUrl":"https://doi.org/10.1242/dmm.050893","url":null,"abstract":"<p><p>Disease Models & Mechanisms (DMM) is delighted to announce that the winners of the DMM Outstanding Paper Prize 2023 are Lídia Faria for their Research Article (titled 'Activation of an actin signaling pathway in pre-malignant mammary epithelial cells by P-cadherin is essential for transformation'), and Ffion R. Hammond and Amy Lewis for their Resource Article (titled 'An arginase 2 promoter transgenic line illuminates immune cell polarisation in zebrafish'). The two prizes of £1000 are awarded to the first author(s) of the papers that are judged by the journal's Editors to be the most outstanding contribution to the journal that year.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141261001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Trinitee Oliver, Nhu Y Nguyen, Christopher B Tully, Nikki M McCormack, Christina M Sun, Alyson A Fiorillo, Christopher R Heier
{"title":"The glucocorticoid receptor acts locally to protect dystrophic muscle and heart during disease.","authors":"Trinitee Oliver, Nhu Y Nguyen, Christopher B Tully, Nikki M McCormack, Christina M Sun, Alyson A Fiorillo, Christopher R Heier","doi":"10.1242/dmm.050397","DOIUrl":"10.1242/dmm.050397","url":null,"abstract":"<p><p>Absence of dystrophin results in muscular weakness, chronic inflammation and cardiomyopathy in Duchenne muscular dystrophy (DMD). Pharmacological corticosteroids are the DMD standard of care; however, they have harsh side effects and unclear molecular benefits. It is uncertain whether signaling by physiological corticosteroids and their receptors plays a modifying role in the natural etiology of DMD. Here, we knocked out the glucocorticoid receptor (GR, encoded by Nr3c1) specifically in myofibers and cardiomyocytes within wild-type and mdx52 mice to dissect its role in muscular dystrophy. Double-knockout mice showed significantly worse phenotypes than mdx52 littermate controls in measures of grip strength, hang time, inflammatory pathology and gene expression. In the heart, GR deletion acted additively with dystrophin loss to exacerbate cardiomyopathy, resulting in enlarged hearts, pathological gene expression and systolic dysfunction, consistent with imbalanced mineralocorticoid signaling. The results show that physiological GR functions provide a protective role during muscular dystrophy, directly contrasting its degenerative role in other disease states. These data provide new insights into corticosteroids in disease pathophysiology and establish a new model to investigate cell-autonomous roles of nuclear receptors and mechanisms of pharmacological corticosteroids.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11139035/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141070289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eleni Christoforidou, Libby Moody, Greig Joilin, Fabio A Simoes, David Gordon, Kevin Talbot, Majid Hafezparast
{"title":"An ALS-associated mutation dysregulates microglia-derived extracellular microRNAs in a sex-specific manner.","authors":"Eleni Christoforidou, Libby Moody, Greig Joilin, Fabio A Simoes, David Gordon, Kevin Talbot, Majid Hafezparast","doi":"10.1242/dmm.050638","DOIUrl":"10.1242/dmm.050638","url":null,"abstract":"<p><p>Evidence suggests the presence of microglial activation and microRNA (miRNA) dysregulation in amyotrophic lateral sclerosis (ALS), the most common form of adult motor neuron disease. However, few studies have investigated whether the miRNA dysregulation originates from microglia. Furthermore, TDP-43 (encoded by TARDBP), involved in miRNA biogenesis, aggregates in tissues of ∼98% of ALS cases. Thus, this study aimed to determine whether expression of the ALS-linked TDP-43M337V mutation in a transgenic mouse model dysregulates microglia-derived miRNAs. RNA sequencing identified several dysregulated miRNAs released by transgenic microglia and a differential miRNA release by lipopolysaccharide-stimulated microglia, which was more pronounced in cells from female mice. We validated the downregulation of three candidate miRNAs, namely, miR-16-5p, miR-99a-5p and miR-191-5p, by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and identified their predicted targets, which primarily include genes involved in neuronal development and function. These results suggest that altered TDP-43 function leads to changes in the miRNA population released by microglia, which may in turn be a source of the miRNA dysregulation observed in the disease. This has important implications for the role of neuroinflammation in ALS pathology and could provide potential therapeutic targets.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eleni Christoforidou, Libby Moody, Greig Joilin, Fabio A Simoes, David Gordon, Kevin Talbot, Majid Hafezparast
{"title":"An ALS-associated mutation dysregulates microglia-derived extracellular microRNAs in a sex-specific manner.","authors":"Eleni Christoforidou, Libby Moody, Greig Joilin, Fabio A Simoes, David Gordon, Kevin Talbot, Majid Hafezparast","doi":"10.1242/dmm.050638","DOIUrl":"10.1242/dmm.050638","url":null,"abstract":"<p><p>Evidence suggests the presence of microglial activation and microRNA (miRNA) dysregulation in amyotrophic lateral sclerosis (ALS), the most common form of adult motor neuron disease. However, few studies have investigated whether the miRNA dysregulation originates from microglia. Furthermore, TDP-43 (encoded by TARDBP), involved in miRNA biogenesis, aggregates in tissues of ∼98% of ALS cases. Thus, this study aimed to determine whether expression of the ALS-linked TDP-43M337V mutation in a transgenic mouse model dysregulates microglia-derived miRNAs. RNA sequencing identified several dysregulated miRNAs released by transgenic microglia and a differential miRNA release by lipopolysaccharide-stimulated microglia, which was more pronounced in cells from female mice. We validated the downregulation of three candidate miRNAs, namely, miR-16-5p, miR-99a-5p and miR-191-5p, by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and identified their predicted targets, which primarily include genes involved in neuronal development and function. These results suggest that altered TDP-43 function leads to changes in the miRNA population released by microglia, which may in turn be a source of the miRNA dysregulation observed in the disease. This has important implications for the role of neuroinflammation in ALS pathology and could provide potential therapeutic targets.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152562/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigating pulmonary neuroendocrine cells in human respiratory diseases with airway models.","authors":"Noah Candeli, Talya Dayton","doi":"10.1242/dmm.050620","DOIUrl":"10.1242/dmm.050620","url":null,"abstract":"<p><p>Despite accounting for only ∼0.5% of the lung epithelium, pulmonary neuroendocrine cells (PNECs) appear to play an outsized role in respiratory health and disease. Increased PNEC numbers have been reported in a variety of respiratory diseases, including chronic obstructive pulmonary disease and asthma. Moreover, PNECs are the primary cell of origin for lung neuroendocrine cancers, which account for 25% of aggressive lung cancers. Recent research has highlighted the crucial roles of PNECs in lung physiology, including in chemosensing, regeneration and immune regulation. Yet, little is known about the direct impact of PNECs on respiratory diseases. In this Review, we summarise the current associations of PNECs with lung pathologies, focusing on how new experimental disease models, such as organoids derived from human pluripotent stem cells or tissue stem cells, can help us to better understand the contribution of PNECs to respiratory diseases.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152561/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141175230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emily R Hildebrandt, Anushka Sarkar, Rajani Ravishankar, June H Kim, Walter K Schmidt
{"title":"Evaluating protein prenylation of human and viral CaaX sequences using a humanized yeast system.","authors":"Emily R Hildebrandt, Anushka Sarkar, Rajani Ravishankar, June H Kim, Walter K Schmidt","doi":"10.1242/dmm.050516","DOIUrl":"10.1242/dmm.050516","url":null,"abstract":"<p><p>Prenylated proteins are prevalent in eukaryotic biology (∼1-2% of proteins) and are associated with human disease, including cancer, premature aging and infections. Prenylated proteins with a C-terminal CaaX sequence are targeted by CaaX-type prenyltransferases and proteases. To aid investigations of these enzymes and their targets, we developed Saccharomyces cerevisiae strains that express these human enzymes instead of their yeast counterparts. These strains were developed in part to explore human prenyltransferase specificity because of findings that yeast FTase has expanded specificity for sequences deviating from the CaaX consensus (i.e. atypical sequence and length). The humanized yeast strains displayed robust prenyltransferase activity against CaaX sequences derived from human and pathogen proteins containing typical and atypical CaaX sequences. The system also recapitulated prenylation of heterologously expressed human proteins (i.e. HRas and DNAJA2). These results reveal that substrate specificity is conserved for yeast and human farnesyltransferases but is less conserved for type I geranylgeranyltransferases. These yeast systems can be easily adapted for investigating the prenylomes of other organisms and are valuable new tools for helping define the human prenylome, which includes physiologically important proteins for which the CaaX modification status is unknown.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11152559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141179119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eloise G Lloyd, Joaquín Araos Henríquez, Giulia Biffi
{"title":"Modelling the micro- and macro- environment of pancreatic cancer: from patients to pre-clinical models and back.","authors":"Eloise G Lloyd, Joaquín Araos Henríquez, Giulia Biffi","doi":"10.1242/dmm.050624","DOIUrl":"https://doi.org/10.1242/dmm.050624","url":null,"abstract":"Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with very low survival rates. Over the past 50 years, improvements in PDAC survival have significantly lagged behind the progress made in other cancers. PDAC's dismal prognosis is due to typical late-stage diagnosis combined with lack of effective treatments and complex mechanisms of disease. We propose that improvements in survival are partly hindered by the current focus on largely modelling and targeting PDAC as one disease, despite it being heterogeneous. Implementing new disease-representative pre-clinical mouse models that capture this complexity could enable the development of transformative therapies. Specifically, these models should recapitulate human PDAC late-stage biology, heterogeneous genetics, extensive non-malignant stroma, and associated risk factors and comorbidities. In this Perspective, we focus on how pre-clinical mouse models could be improved to exemplify key features of PDAC micro- and macro- environments, which would drive clinically relevant patient stratification, tailored treatments and improved survival.","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving access to gene therapy for rare diseases.","authors":"Thomas A Fox, Claire Booth","doi":"10.1242/dmm.050623","DOIUrl":"https://doi.org/10.1242/dmm.050623","url":null,"abstract":"Effective gene therapy approaches have been developed for many rare diseases, including inborn errors of immunity and metabolism, haemoglobinopathies and inherited blindness. Despite successful pre-clinical and clinical results, these gene therapies are not widely available, primarily for non-medical reasons. Lack of commercial interest in therapies for ultra-rare diseases, costs of development and complex manufacturing processes required for advanced therapy medicinal products (ATMPs) are some of the main problems that are restricting access. The complexities and costs of navigating the regulatory environments in different jurisdictions for treatments that affect small numbers of patients is a problem unique to ATMPS for rare and ultra-rare diseases. In this Perspective, we outline some of the challenges and potential solutions that, we hope, will improve access to gene therapy for rare diseases.","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140626046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}