Disease Models & Mechanisms最新文献

筛选
英文 中文
A prioritization tool for cilia-associated genes and their in vivo resources unveil new avenues for ciliopathy research. 纤毛相关基因优先排序工具及其体内资源为纤毛病研究开辟了新途径。
IF 4.3 3区 医学
Disease Models & Mechanisms Pub Date : 2024-09-12 DOI: 10.1242/dmm.052000
Robert E Van Sciver,Tamara Caspary
{"title":"A prioritization tool for cilia-associated genes and their in vivo resources unveil new avenues for ciliopathy research.","authors":"Robert E Van Sciver,Tamara Caspary","doi":"10.1242/dmm.052000","DOIUrl":"https://doi.org/10.1242/dmm.052000","url":null,"abstract":"Defects in ciliary signaling or mutations in proteins that localize to primary cilia lead to a class of human diseases known as ciliopathies. About 10% of mammalian genes encode cilia-associated proteins and a major gap in the cilia research field is prioritizing which genes to study and finding the in vivo vertebrate mutant alleles and reagents available for their study. Here we present a unified resource listing the cilia-associated human genes cross-referenced to available mouse and zebrafish mutant alleles, their associated phenotypes as well as expression data in kidney and functional data for vertebrate Hedgehog signaling. This resource empowers researchers to easily sort and filter genes based on their own expertise and priorities, cross-reference with newly-generated -omics datasets, and quickly find in vivo resources and phenotypes associated with a gene of interest.","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deficient GATA6-CXCR7 signaling leads to bicuspid aortic valve. GATA6-CXCR7 信号缺陷导致主动脉瓣双瓣。
IF 4.3 3区 医学
Disease Models & Mechanisms Pub Date : 2024-09-10 DOI: 10.1242/dmm.050934
Rebeca Piñeiro-Sabarís,Donal MacGrogan,José Luis de la Pompa
{"title":"Deficient GATA6-CXCR7 signaling leads to bicuspid aortic valve.","authors":"Rebeca Piñeiro-Sabarís,Donal MacGrogan,José Luis de la Pompa","doi":"10.1242/dmm.050934","DOIUrl":"https://doi.org/10.1242/dmm.050934","url":null,"abstract":"The cardiac outflow tract (OFT) transiently links the ventricles to the aortic sac and forms the arterial valves. Abnormalities in these valves, such as bicuspid aortic valve (BAV), are common congenital anomalies. GATA6-inactivating variants cause cardiac OFT defects and BAV, but their mechanisms are unclear. We generated Gata6STOP/+ mice using CRISPR-Cas9, which show highly penetrant BAV (70%) and membranous ventricular septal defects (43%). These mice exhibited decreased proliferation and increased ISL1-positive progenitor cells in the OFT, indicating abnormal cardiovascular differentiation. Gata6 deletion with the Mef2cCre driver line recapitulated Gata6STOP/+ phenotypes, indicating a cell-autonomous role for Gata6 in the second heart field. Gata6STOP/+ mice showed reduced OFT length and caliber, associated with deficient cardiac neural crest cell contribution, which may cause valvulo-septal defects. RNA-sequencing analysis showed depletion in pathways related to cell proliferation and migration, highlighting Cxcr7 (also known as Ackr3) as a candidate gene. Reduced mesenchymal cell migration and invasion were observed in Gata6STOP/+ OFT tissue. CXCR7 agonists reduced mesenchymal cell migration and increased invasion in wild-type but not in Gata6STOP/+ explants, indicating the GATA6-dependent role of CXCR7 in OFT development and its potential link to BAV.","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.3,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142215556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle. eEF1α2 是老化肌肉肌动蛋白细胞骨架平衡所必需的。
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-09-01 Epub Date: 2024-08-29 DOI: 10.1242/dmm.050729
Hidetaka Katow, Hyung Don Ryoo
{"title":"eEF1α2 is required for actin cytoskeleton homeostasis in the aging muscle.","authors":"Hidetaka Katow, Hyung Don Ryoo","doi":"10.1242/dmm.050729","DOIUrl":"https://doi.org/10.1242/dmm.050729","url":null,"abstract":"<p><p>The translation elongation factor eEF1α (eukaryotic elongation factor 1α) mediates mRNA translation by delivering aminoacyl-tRNAs to ribosomes. eEF1α also has other reported roles, including the regulation of actin dynamics. However, these distinct roles of eEF1α are often challenging to uncouple and remain poorly understood in aging metazoan tissues. The genomes of mammals and Drosophila encode two eEF1α paralogs, with eEF1α1 expressed ubiquitously and eEF1α2 expression more limited to neurons and muscle cells. Here, we report that eEF1α2 plays a unique role in maintaining myofibril homeostasis during aging in Drosophila. Specifically, we generated an eEF1α2 null allele, which was viable and showed two distinct muscle phenotypes. In young flies, the mutants had thinner myofibrils in indirect flight muscles that could be rescued by expressing eEF1α1. With aging, the muscles of the mutant flies began showing abnormal distribution of actin and myosin in muscles, but without a change in actin and myosin protein levels. This age-related phenotype could not be rescued by eEF1α1 overexpression. These findings support an unconventional role of Drosophila eEF1α2 in age-related homeostasis of muscle myofibers.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The highly metastatic 4T1 breast carcinoma model possesses features of a hybrid epithelial/mesenchymal phenotype. 高度转移的 4T1 乳腺癌模型具有上皮-间充质混合表型的特征。
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-09-01 Epub Date: 2024-09-04 DOI: 10.1242/dmm.050771
Mary E Herndon, Mitchell Ayers, Katherine N Gibson-Corley, Michael K Wendt, Lori L Wallrath, Michael D Henry, Christopher S Stipp
{"title":"The highly metastatic 4T1 breast carcinoma model possesses features of a hybrid epithelial/mesenchymal phenotype.","authors":"Mary E Herndon, Mitchell Ayers, Katherine N Gibson-Corley, Michael K Wendt, Lori L Wallrath, Michael D Henry, Christopher S Stipp","doi":"10.1242/dmm.050771","DOIUrl":"10.1242/dmm.050771","url":null,"abstract":"<p><p>Epithelial-mesenchymal transitions (EMTs) are thought to promote metastasis via downregulation of E-cadherin (also known as Cdh1) and upregulation of mesenchymal markers such as N-cadherin (Cdh2) and vimentin (Vim). Contrary to this, E-cadherin is retained in many invasive carcinomas and promotes collective cell invasion. To investigate how E-cadherin regulates metastasis, we examined the highly metastatic, E-cadherin-positive murine 4T1 breast cancer model, together with the less metastatic, 4T1-related cell lines 4T07, 168FARN and 67NR. We found that 4T1 cells display a hybrid epithelial/mesenchymal phenotype with co-expression of epithelial and mesenchymal markers, whereas 4T07, 168FARN, and 67NR cells display progressively more mesenchymal phenotypes in vitro that relate inversely to their metastatic capacity in vivo. Using RNA interference and constitutive expression, we demonstrate that the expression level of E-cadherin does not determine 4T1 or 4T07 cell metastatic capacity in mice. Mechanistically, 4T1 cells possess highly dynamic, unstable cell-cell junctions and can undergo collective invasion without E-cadherin downregulation. However, 4T1 orthotopic tumors in vivo also contain subregions of EMT-like loss of E-cadherin. Thus, 4T1 cells function as a model for carcinomas with a hybrid epithelial/mesenchymal phenotype that promotes invasion and metastasis.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141893109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb. Axolotl 下颌骨的再生是通过机械缝隙闭合和与肢体共享再生程序实现的。
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-08-29 DOI: 10.1242/dmm.050743
Julia Kramer, Rita Aires, Sean D Keeley, Tom Alexander Schröder, Günter Lauer, Tatiana Sandoval-Guzmán
{"title":"Axolotl mandible regeneration occurs through mechanical gap closure and a shared regenerative program with the limb.","authors":"Julia Kramer, Rita Aires, Sean D Keeley, Tom Alexander Schröder, Günter Lauer, Tatiana Sandoval-Guzmán","doi":"10.1242/dmm.050743","DOIUrl":"https://doi.org/10.1242/dmm.050743","url":null,"abstract":"<p><p>The mandible plays an essential part in human life and, thus, defects in this structure can dramatically impair the quality of life in patients. Axolotls, unlike humans, are capable of regenerating their lower jaws; however, the underlying mechanisms and their similarity to those in limb regeneration are unknown. In this work, we used morphological, histological, and transcriptomic approaches to analyze the regeneration of lateral resection defects in the axolotl mandible. We found that this structure can regenerate all missing tissues in 90 days through gap minimization, blastema formation, and finally tissue growth, differentiation, and integration. Moreover, transcriptomic comparisons of regenerating mandibles and limbs showed that they share molecular phases of regeneration, that these similarities peak during blastema stages, and that mandible regeneration occurs at a slower pacing. Altogether, our study demonstrates the existence of a shared regenerative program used in two different regenerating body structures with different embryonic origins in the axolotl, and contributes to our understanding of the minimum requirements for a successful regeneration in vertebrates, bringing us closer to understand similar lesions in human mandibles.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142105252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compromised COPII vesicle trafficking leads to glycogenic hepatopathy in zebrafish. COPII囊泡贩运功能受损导致斑马鱼糖源性肝病
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-08-14 DOI: 10.1242/dmm.050748
Yuxi Yang, Xue Zhang, Qingshun Zhao, Jingzi Zhang, Xin Lou
{"title":"Compromised COPII vesicle trafficking leads to glycogenic hepatopathy in zebrafish.","authors":"Yuxi Yang, Xue Zhang, Qingshun Zhao, Jingzi Zhang, Xin Lou","doi":"10.1242/dmm.050748","DOIUrl":"https://doi.org/10.1242/dmm.050748","url":null,"abstract":"<p><p>Being a vital cellular process, COPII vesicle trafficking has been found plays a crucial role in liver metabolism. However, its functions and the underlying mechanisms in systemic metabolic homeostasis have not been fully understood. Here, with a newly identified gene trap zebrafish line (sec31anju221), we show that compromised COPII vesicle trafficking leads to biphasic abnormal hepatic metabolism. During the larval stage, deficiency of COPII-mediated trafficking leads to activation of unfolded protein reaction (UPR) and the development of hepatic steatosis. By using epistasis analysis, we found eIF2a/ATF4 branch serves as the primary effector for liver steatosis. In adult sec31anju221 fish, the hepatosteatosis was reversed and the phenotype swing to glycogenic hepatopathy. Proteomic profiling and biochemical assay indicate sec31anju221 fish are in a state of hypothyroidism. Moreover, our study showed thyroid hormone treatment alleviates the metabolic defects. This study provides insights into processes of liver diseases associated with vesicle trafficking impairments and has expanded our understanding of the pathological interplay between thyroid and liver.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model. 在唐氏综合征小鼠模型的发育过程中,出现与三体 Dyrk1a 相关的骨骼表型的性别特异性。
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-08-13 DOI: 10.1242/dmm.050914
Jonathan M LaCombe, Kourtney Sloan, Jared R Thomas, Matthew P Blackwell, Isabella Crawford, Flannery Bishop, Joseph M Wallace, Randall J Roper
{"title":"Sex specific emergence of trisomic Dyrk1a-related skeletal phenotypes in the development of a Down syndrome mouse model.","authors":"Jonathan M LaCombe, Kourtney Sloan, Jared R Thomas, Matthew P Blackwell, Isabella Crawford, Flannery Bishop, Joseph M Wallace, Randall J Roper","doi":"10.1242/dmm.050914","DOIUrl":"10.1242/dmm.050914","url":null,"abstract":"<p><p>Skeletal insufficiency affects all individuals with Down syndrome (DS) or Trisomy 21 (Ts21) and may alter bone strength throughout development due to a reduced period of bone formation and early attainment of peak bone mass compared to typically developing individuals. Appendicular skeletal deficits also appear in males before females with DS. In femurs of male Ts65Dn DS model mice, cortical deficits were pronounced throughout development, but trabecular deficits and Dyrk1a overexpression were transitory until postnatal day (P) 30 when there were persistent trabecular and cortical deficits and Dyrk1a was trending overexpression. Correction of DS-related skeletal deficits by a purported DYRK1A inhibitor or through genetic means beginning at P21 was not effective at P30, but germline normalization of Dyrk1a improved male bone structure by P36. Trabecular and cortical deficits in female Ts65Dn mice were evident at P30 but subsided by P36, typifying periodic developmental skeletal normalizations that progressed to more prominent bone deficiencies. Sex-dependent differences in skeletal deficits with a delayed impact of trisomic Dyrk1a are important to find temporally specific treatment periods for bone and other phenotypes associated with Ts21.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141970851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generation and characterization of a novel mouse model of Becker Muscular Dystrophy with a deletion of exons 52 to 55. 外显子 52 至 55 缺失的贝克尔肌肉营养不良症新型小鼠模型的生成和特征描述。
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-08-05 DOI: 10.1242/dmm.050595
Lucie O M Perillat, Tatianna W Y Wong, Eleonora Maino, Abdalla Ahmed, Ori Scott, Elzbieta Hyatt, Paul Delgado-Olguin, Shagana Visuvanathan, Evgueni A Ivakine, Ronald D Cohn
{"title":"Generation and characterization of a novel mouse model of Becker Muscular Dystrophy with a deletion of exons 52 to 55.","authors":"Lucie O M Perillat, Tatianna W Y Wong, Eleonora Maino, Abdalla Ahmed, Ori Scott, Elzbieta Hyatt, Paul Delgado-Olguin, Shagana Visuvanathan, Evgueni A Ivakine, Ronald D Cohn","doi":"10.1242/dmm.050595","DOIUrl":"https://doi.org/10.1242/dmm.050595","url":null,"abstract":"<p><p>Becker Muscular Dystrophy (BMD) is a rare X-linked recessive neuromuscular disorder frequently caused by in-frame deletions in the DMD gene that result in the production of a truncated, yet functional, dystrophin protein. The consequences of BMD-causing in-frame deletions on the organism are difficult to predict, especially in regard to long-term prognosis. Here, we employed CRISPR-Cas9 to generate a new Dmd del52-55 mouse model by deleting exons 52-55, resulting in a BMD-like in-frame deletion. To delineate the long-term effects of this deletion, we studied these mice over 52 weeks by performing histology and echocardiography analyses and assessing motor functions. Our results suggest that a truncated dystrophin is sufficient to maintain wildtype-like muscle and heart histology and functions in young mice. However, the truncated protein appears insufficient to maintain normal muscle homeostasis and protect against exercise-induced damage at 52 weeks. To further delineate the effects of this exon52-55 in-frame deletion, we performed RNA-Seq pre- and post-exercise and identified several differentially expressed pathways that reflect the abnormal muscle phenotype observed at 52 weeks in the BMD model.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141888756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CCL2 signaling promotes skeletal muscle wasting in non-tumor and breast tumor models. C-C 趋化因子配体 2 信号传导促进了非肿瘤和乳腺肿瘤小鼠模型中骨骼肌的萎缩。
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-08-01 Epub Date: 2024-09-09 DOI: 10.1242/dmm.050398
Nadia Alissa, Wei Bin Fang, Marcela Medrano, Nick Bergeron, Yuuka Kozai, Qingting Hu, Chloe Redding, John Thyfault, Jill Hamilton-Reeves, Cory Berkland, Nikki Cheng
{"title":"CCL2 signaling promotes skeletal muscle wasting in non-tumor and breast tumor models.","authors":"Nadia Alissa, Wei Bin Fang, Marcela Medrano, Nick Bergeron, Yuuka Kozai, Qingting Hu, Chloe Redding, John Thyfault, Jill Hamilton-Reeves, Cory Berkland, Nikki Cheng","doi":"10.1242/dmm.050398","DOIUrl":"10.1242/dmm.050398","url":null,"abstract":"<p><p>Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reduced connexin-43 expression, slow conduction and repolarisation dispersion in a model of hypertrophic cardiomyopathy. 肥厚型心肌病模型中连接蛋白-43表达减少、传导缓慢和再极化弥散。
IF 4 3区 医学
Disease Models & Mechanisms Pub Date : 2024-08-01 Epub Date: 2024-08-27 DOI: 10.1242/dmm.050407
Seakcheng Lim, Melissa M Mangala, Mira Holliday, Henrietta Cserne Szappanos, Samantha Barratt-Ross, Serena Li, Jordan Thorpe, Whitney Liang, Ginell N Ranpura, Jamie I Vandenberg, Christopher Semsarian, Adam P Hill, Livia C Hool
{"title":"Reduced connexin-43 expression, slow conduction and repolarisation dispersion in a model of hypertrophic cardiomyopathy.","authors":"Seakcheng Lim, Melissa M Mangala, Mira Holliday, Henrietta Cserne Szappanos, Samantha Barratt-Ross, Serena Li, Jordan Thorpe, Whitney Liang, Ginell N Ranpura, Jamie I Vandenberg, Christopher Semsarian, Adam P Hill, Livia C Hool","doi":"10.1242/dmm.050407","DOIUrl":"https://doi.org/10.1242/dmm.050407","url":null,"abstract":"<p><p>Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia. Analysis of rhythmonome protein expression in MYH7 R403Q cardiomyocytes showed reduced expression of connexin-43 (also known as GJA1), sodium channels and inward rectifier potassium channels - a three-way hit that reduces electrotonic coupling and slows cardiac conduction. Our data represent a previously unreported, biophysical basis for arrhythmia in HCM that is intrinsic to cardiomyocyte electrophysiology. Later in the progression of the disease, these proarrhythmic phenotypes may be accentuated by myocyte disarray and fibrosis to contribute to sudden death.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":null,"pages":null},"PeriodicalIF":4.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142072319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信