A hypomorphic model of CPS1 deficiency for investigating the effects of hyperammonemia on the developing nervous system.

IF 3.3 3区 医学 Q2 CELL BIOLOGY
Disease Models & Mechanisms Pub Date : 2025-07-01 Epub Date: 2025-06-20 DOI:10.1242/dmm.052303
Stuti Bakshi, Taryn Diep, Brandon J Willis, Rachel Reyes, Grace F Wu, Georgios Makris, Martin Poms, Isabel Day, Qin Sun, Irina Zhuravka, Lindsay Lueptow, Michelle Tang, Gareth A Cromie, Aimée M Dudley, Johannes Häberle, Gerald S Lipshutz
{"title":"A hypomorphic model of CPS1 deficiency for investigating the effects of hyperammonemia on the developing nervous system.","authors":"Stuti Bakshi, Taryn Diep, Brandon J Willis, Rachel Reyes, Grace F Wu, Georgios Makris, Martin Poms, Isabel Day, Qin Sun, Irina Zhuravka, Lindsay Lueptow, Michelle Tang, Gareth A Cromie, Aimée M Dudley, Johannes Häberle, Gerald S Lipshutz","doi":"10.1242/dmm.052303","DOIUrl":null,"url":null,"abstract":"<p><p>Carbamoyl phosphate synthetase 1 (CPS1) deficiency is a rare metabolic disorder that, in neonatal onset, is typically characterized by severe life-threatening and neurologically injuring hyperammonemic episodes with high unmet patient need. Patients that retain limited enzyme activity may present later in life with less severe hyperammonemia. CPS1 drives the first step in the urea cycle, the pathway terrestrial mammals utilize to metabolize nitrogen. In order to probe the effect of hyperammonemia on the developing nervous system and explore new therapies, a murine Cps1 exon 3-4 mutant was previously generated. However, these mice die within 24 h of birth, limiting study capabilities. Herein, we developed a novel Cps1 hypomorphic murine model with residual enzyme activity that maintains survival, but with dysfunction of Cps1 that could be detected biochemically. Characterization, based on the orthologous human variant Asn674Ile, revealed that the variant is reproducible, 100% penetrant and biochemically phenocopies the human disorder. The hypomorph presents with elevated ammonia and glutamate, and reduced citrulline, and with an impaired rate of ureagenesis, providing a novel platform to study and develop therapies for CPS1 deficiency.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208401/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052303","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/20 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Carbamoyl phosphate synthetase 1 (CPS1) deficiency is a rare metabolic disorder that, in neonatal onset, is typically characterized by severe life-threatening and neurologically injuring hyperammonemic episodes with high unmet patient need. Patients that retain limited enzyme activity may present later in life with less severe hyperammonemia. CPS1 drives the first step in the urea cycle, the pathway terrestrial mammals utilize to metabolize nitrogen. In order to probe the effect of hyperammonemia on the developing nervous system and explore new therapies, a murine Cps1 exon 3-4 mutant was previously generated. However, these mice die within 24 h of birth, limiting study capabilities. Herein, we developed a novel Cps1 hypomorphic murine model with residual enzyme activity that maintains survival, but with dysfunction of Cps1 that could be detected biochemically. Characterization, based on the orthologous human variant Asn674Ile, revealed that the variant is reproducible, 100% penetrant and biochemically phenocopies the human disorder. The hypomorph presents with elevated ammonia and glutamate, and reduced citrulline, and with an impaired rate of ureagenesis, providing a novel platform to study and develop therapies for CPS1 deficiency.

Abstract Image

Abstract Image

Abstract Image

磷酸氨甲酰合成酶1 Asn674Ile突变促进酶改变和小鼠高氨血症。
氨甲酰磷酸合成酶1 (CPS1)缺乏症是一种罕见的代谢性疾病,在新生儿发病时,通常以严重危及生命和神经损伤的高氨血症发作为特征,伴有高未满足的患者需求。酶活性有限的患者可能在以后的生活中出现较轻的高氨血症。CPS1驱动尿素循环的第一步,这是陆地哺乳动物代谢氮的途径。为了探究高氨血症对发育中的神经系统的影响并探索新的治疗方法,我们在小鼠Cps1外显子3-4中产生了一个突变体。然而,这些小鼠在出生24小时内死亡,限制了研究能力。在此,我们开发了一种新的Cps1半形态小鼠模型,该模型具有维持生存的残留酶活性,但Cps1功能障碍可以通过生化检测到。基于人类同源突变Asn674Ile的鉴定显示,它具有可重复性,100%的渗透性,并具有生物化学表型。CPS1缺乏症表现为氨、谷氨酸水平升高,瓜氨酸水平降低,尿素生成率降低,为研究和开发CPS1缺乏症的治疗方法提供了新的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信