Dimitrios G Argyris, Dimitra P Anastasiadou, Panagiota S Filippou, George S Karagiannis
{"title":"An emerging paradigm of CXCL16 involvement in cancer progression.","authors":"Dimitrios G Argyris, Dimitra P Anastasiadou, Panagiota S Filippou, George S Karagiannis","doi":"10.1016/j.cytogfr.2025.05.006","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.05.006","url":null,"abstract":"<p><p>The chemokine CXCL16, often termed \"Swiss army knife chemokine,\" plays diverse roles in tumor biology through its dual existence as a transmembrane (mCXCL16) and a soluble (sCXCL16) form. Signaling exclusively through its receptor CXCR6, this axis orchestrates context-specific functions in immune cell trafficking, tumor invasion, and vascular remodeling. Here, we present a comprehensive review of the CXCL16-CXCR6 signaling pathway, with emphasis on structural organization, the relay of canonical and non-canonical signaling cascades, and its emerging contributions to cancer progression. We detail how mCXCL16 functions as an adhesion molecule facilitating immune cell retention, while its proteolytic cleavage by ADAM10/17 generates sCXCL16, which enhances tumor cell migration, epithelial-to-mesenchymal transition and metastasis. In parallel, the CXCL16/CXCR6 axis regulates immune responses by promoting tissue-resident memory T cell recruitment, though sustained activation may paradoxically support immune evasion. Finally, we describe the proangiogenic effects of CXCL16 on endothelial and stromal compartments, notably during inflammation-driven tumors. The CXCL16-CXCR6 axis exemplifies a pleiotropic chemokine system at the intersection of immunity and malignancy. Understanding its context-dependent functions offers new opportunities for therapeutic intervention, including immune modulation, blockade of metastatic dissemination, and tumor vascular targeting.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144181405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TGF-β-driven EMT in cancer progression and drug resistance.","authors":"Wen Luo, Qingfeng Shi, Mingming Han, Zhenwang Zhang, Russel J Reiter, Milad Ashrafizadeh, Noushin Nabavi, Gautam Sethi, Christophe Nicot, Ying Mao","doi":"10.1016/j.cytogfr.2025.05.004","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.05.004","url":null,"abstract":"<p><p>The carcinogenesis and drug resistance can be accelerated by TGF-β, primarily by enhancing epithelial-mesenchymal transition (EMT). This review examines the complex mechanisms by which TGF-β drives EMT across different tumors, highlighting its function in increasing cellular plasticity, promoting metastasis, and contributing to therapy resistance. TGF-β activates both canonical Smad-dependent and non-canonical signaling, leading to profound changes in cell morphology, motility, and stemness. This review highlights recent discoveries on how TGF-β regulates cancer stem cells and contributes to drug resistance, including resistance to both conventional chemotherapy and targeted treatments. In addition, it examines the intricate interaction between TGF-β and the key molecular pathways controlling EMT, such as PI3K/AKT, MAPK, and epigenetic regulators. It also examines potential therapeutic approaches aimed at TGF-β-induced EMT, emphasizing promising preclinical results from novel compounds and combination therapies-including natural products, small-molecule inhibitors, and epigenetic regulators-that interfere with TGF-β receptor activation or downstream signaling pathways. Understanding these complex interactions provides valuable insights for developing more effective cancer therapies. The review concludes by identifying key research gaps as well as suggesting future directions for investigating TGF-β's role in cancer biology and treatment resistance.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144173067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tara Shammas, Malalage N Peiris, April N Meyer, Daniel J Donoghue
{"title":"BCR-ABL: The molecular mastermind behind chronic myeloid leukemia.","authors":"Tara Shammas, Malalage N Peiris, April N Meyer, Daniel J Donoghue","doi":"10.1016/j.cytogfr.2025.05.001","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.05.001","url":null,"abstract":"<p><p>The chromosomal translocation t(9;22)(q34;q11), known as the Philadelphia (Ph) chromosome, results in the BCR-ABL gene fusion which gives rise to Chronic Myeloid Leukemia (CML), a slowly progressing hematopoietic cancer that begins in the bone marrow of the patient. Making up about 15 % of all new leukemia cases, CML remains a critical focus of cancer research and treatment due to its distinctive genetic hallmark, the BCR-ABL fusion gene. The BCR-ABL fusion protein is a constitutively active tyrosine kinase which signals to multiple pathways including the Ras/MAPK, PI3K/AKT, JAK/STAT and NF-kappaB pathways which promote uncontrolled cell proliferation and survival. While multiple tyrosine kinase inhibitors (TKIs) are used to specifically target the fusion in the treatment of CML, new therapies are becoming available to overcome the resistance that occurs during TKI treatments of the disease. The discovery of the Philadelphia chromosome and the subsequent elucidation of the BCR-ABL fusion protein have since become a paradigm for understanding the genetic basis of cancer and developing precision medicine approaches. This review highlights the etiology and historical discovery of the BCR-ABL fusion, recent advances in understanding its regulatory mechanisms, and emerging strategies for its therapeutic targeting.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144062700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liyile Chen, Ken Kadoya, Tsutomu Endo, Norimasa Iwasaki, M Alaa Terkawi
{"title":"Efferocytosis at the frontline of homeostasis: Shaping the bone microenvironment and therapeutic implications in related diseases.","authors":"Liyile Chen, Ken Kadoya, Tsutomu Endo, Norimasa Iwasaki, M Alaa Terkawi","doi":"10.1016/j.cytogfr.2025.05.002","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.05.002","url":null,"abstract":"<p><p>Bone is a dynamic tissue that constantly undergoes remodeling processes throughout life to maintain its structure and integrity. During this process, physiological bone turnover, which is shaped by apoptosis, occurs in cells in the bone microenvironment. The clearance of these apoptotic cells (ACs) is executed by phagocytes through a process called efferocytosis, which simply means taking to the grave \"burial.\" Efferocytosis is a multistage process involving the recognition, binding, internalization, and digestion of ACs, culminating in the resolution of inflammation. Critically, aberrations in efferocytosis lead to the accumulation of apoptotic corpses, impairing tissue homeostasis and contributing to various pathologies as well as bone-related diseases. Emerging evidence suggests that modulating/activating efferocytosis at any stage represents a promising therapeutic strategy for managing bone-related diseases, especially those associated with aging and inflammation. This review discusses the current understanding of the cellular and molecular mechanisms of efferocytosis, its roles within the bone microenvironment, and potential therapeutic interventions targeting efferocytosis in age-related bone diseases.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144076730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"N4BP1 as a modulator of the NF-κB pathway.","authors":"Xiaojing Zhang, Ruoqi Zheng, Leiliang Zhang","doi":"10.1016/j.cytogfr.2025.04.003","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.04.003","url":null,"abstract":"<p><p>NEDD4-binding protein 1 (N4BP1) is emerging as a critical regulator of inflammation and immune responses, particularly through its effects on the nuclear factor-κ-gene binding (NF-κB) signaling pathway. This review summarizes the regulatory mechanisms by which N4BP1 inhibits NF-κB activation and its subsequent impact on inflammatory diseases, specifically psoriasis. We discuss its interaction with various components of the NF-κB pathway, revealing that N4BP1 serves as a negative regulator of NF-κB-related gene expression under both stimulated and unstimulated conditions. Evidence highlights that N4BP1 is pivotal in controlling keratinocyte behavior and immune cell dynamics, thus influencing psoriasis pathology. Furthermore, we explore the emerging role of N4BP1 in viral infections, demonstrating its inhibitory effects on human immunodeficiency virus (HIV) replication. The involvement of N4BP1 in Notch signaling and neurogenesis underscores its multifaceted roles in cellular development and response to external stimuli. Collectively, these findings position N4BP1 as a significant player in modulating immune responses and offer potential therapeutic avenues for managing inflammatory diseases and viral infections.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143990173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanisms underlying resistance to CAR-T cell therapy and strategies for enhancement.","authors":"Anran Wu, Tingying Zhang, Hongkai Yu, Yuyue Cao, Rui Zhang, Ruonan Shao, Bofeng Liu, Liting Chen, Kailin Xu, Wei Chen, Jinyuan Ho, Xiaofeng Shi","doi":"10.1016/j.cytogfr.2025.04.002","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.04.002","url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR) T-cell therapy has emerged as a revolutionary approach in the treatment of hematological malignancies, including acute lymphoblastic leukemia, B-cell lymphoma, and multiple myeloma. Despite its promise, the clinical efficacy is often hampered by transient efficacy and subsequent relapse, which curtail the long-term success of this treatment. Current research focuses on overcoming these obstacles by exploring multitarget strategies and optimizing CAR-T cell design. This review summarizes recent insights into the resistance mechanisms associated with CAR-T cell therapy, and delineates emerging strategies for optimized CAR construction, including targeting multiple antigens, improving CAR design, and enhancing T-cell persistence. The goal is to provide a comprehensive overview of the field's current landscape to guide future research and the clinical application of CAR-T cell therapies.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143958743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Decoding the neuroimmune axis in colorectal cancer: From neural circuitry to therapeutic innovation.","authors":"Ying Li, Sheng-Ya Yang, Ying-Ru Zhang, Yan Wang","doi":"10.1016/j.cytogfr.2025.04.001","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.04.001","url":null,"abstract":"<p><p>The nervous and immune systems are two major components that maintain body homeostasis, with their functional roles often overlapping significantly. Both systems are capable of identifying, integrating, and organizing responsive reactions to various external stimuli. The gut, referred to as the \"second brain\" and the largest immune organ in the body, serves as the most frequent focal site for neuroimmune interactions. Colorectal cancer (CRC), as the predominant solid tumor arising in this neuroimmune-rich microenvironment, remains understudied through the lens of neuroimmune regulatory mechanisms. This review systematically synthesizes current evidence to elucidate the neuroimmune axis in CRC pathogenesis, with particular emphasis on neuroimmune crosstalk-mediated remodeling of tumor immunity. We comprehensively catalog the immunomodulatory effects exerted by principal neuroregulatory mediators, categorized as: (1) neurotransmitters (glutamate, glutamine, γ-aminobutyric acid, epinephrine, norepinephrine, dopamine, serotonin, acetylcholine, and gaseous signaling molecules); (2) neuropeptides (substance P, calcitonin gene-related peptide, vasoactive intestinal peptide); and (3) neurotrophic factors. Furthermore, we critically evaluate the translational prospects and therapeutic challenges of targeting neuroimmune pathways and propose strategic priorities and research focuses for advancing the development of neuroimmune interaction-related therapeutic approaches in CRC.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143990169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From immune activation to disease progression: Unraveling the complex role of Serum Amyloid A proteins.","authors":"Praveen Papareddy, Heiko Herwald","doi":"10.1016/j.cytogfr.2025.03.003","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.03.003","url":null,"abstract":"<p><p>Serum Amyloid A (SAA) proteins are critical mediators of immune activation and metabolic regulation, bridging the acute-phase response with long-term disease dynamics. Once considered mere biomarkers of inflammation, emerging research has revealed their central role in orchestrating immune responses, lipid metabolism, and tissue remodeling. SAA proteins display context-dependent functions: they promote immune defense and tissue regeneration in some conditions, while exacerbating chronic inflammation and disease progression in others. Recent studies highlight the intricate interplay between SAA isoforms, pattern recognition receptors, and metabolic pathways, with implications for autoimmune diseases, metabolic disorders, and inflammatory pathologies. Despite their well-documented role in acute inflammation, the therapeutic potential of SAA proteins remains underexplored. Ongoing research aims to dissect their multifaceted functions and isoform-specific effects, paving the way for novel diagnostic and therapeutic strategies in immune-mediated diseases.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143967484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Novel insights into neuroinflammatory mechanisms in traumatic brain injury: Focus on pattern recognition receptors as therapeutic targets.","authors":"Harapriya Baral, Ravinder K Kaundal","doi":"10.1016/j.cytogfr.2025.03.001","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.03.001","url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a major global health concern and a leading cause of morbidity and mortality. Neuroinflammation is a pivotal driver of both the acute and chronic phases of TBI, with pattern recognition receptors (PRRs) playing a central role in detecting damage-associated molecular patterns (DAMPs) and initiating immune responses. Key PRR subclasses, including Toll-like receptors (TLRs), NOD-like receptors (NLRs), and cGAS-like receptors (cGLRs), are abundantly expressed in central nervous system (CNS) cells and infiltrating immune cells, where they mediate immune activation, amplify neuroinflammatory cascades, and exacerbate secondary injury mechanisms. This review provides a comprehensive analysis of these PRR subclasses, detailing their distinct structural characteristics, expression patterns, and roles in post-TBI immune responses. We critically examine the molecular mechanisms underlying PRR-mediated signaling and explore their contributions to neuroinflammatory pathways and secondary injury processes. Additionally, preclinical and clinical evidence supporting the therapeutic potential of targeting PRRs to mitigate neuroinflammation and improve neurological outcomes is discussed. By integrating recent advancements, this review offers an in-depth understanding of the role of PRRs in TBI pathobiology and underscores the potential of PRR-targeted therapies in mitigating TBI-associated neurological deficits.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Forgetting COVID-19 - Introduction to the special issue.","authors":"John Hiscott","doi":"10.1016/j.cytogfr.2025.03.002","DOIUrl":"https://doi.org/10.1016/j.cytogfr.2025.03.002","url":null,"abstract":"","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}