Arne Nystuen, Eugene Gonzalez-Lopez, Konrad A Kauper, Kevin Eade, Thomas M Aaberg
{"title":"视网膜睫状体神经营养因子治疗2型黄斑毛细血管扩张的神经保护作用。","authors":"Arne Nystuen, Eugene Gonzalez-Lopez, Konrad A Kauper, Kevin Eade, Thomas M Aaberg","doi":"10.1016/j.cytogfr.2025.06.005","DOIUrl":null,"url":null,"abstract":"<p><p>Neurotrophic factors are a family of proteins that promote the growth and survival of both developing and mature neurons. Extensive preclinical studies have demonstrated neuroprotective properties conferred by ciliary neurotrophic factor (CNTF) in a variety of neuron types across several species. Neuroprotection that CNTF confers slows or prevents neuron loss and appears to be agnostic to the nature of the neurodegenerative mutation or injury. However, translation of these studies to the clinic remains a challenge due in part to delivery barriers inherent to the central nervous system and the short half-life of CNTF. The molecular effect of CNTF delivered by a variety of strategies in model systems has been extensively studied in the neural retina. Long-term retinal neuroprotection has been documented using encapsulated cells that have been genetically modified to produce a stable source of CNTF. Clinical trials have shown that CNTF is well tolerated for use in the human retina. This review focuses on the mechanism of action of CNTF and its potential as a therapeutic agent in retinal disease, with a focus on macular telangiectasia type 2 where CNTF has shown efficacy in slowing the rate of ellipsoid zone loss.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":11.8000,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuroprotective properties of ciliary neurotrophic factor in the retina for the treatment of macular telangiectasia type 2.\",\"authors\":\"Arne Nystuen, Eugene Gonzalez-Lopez, Konrad A Kauper, Kevin Eade, Thomas M Aaberg\",\"doi\":\"10.1016/j.cytogfr.2025.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neurotrophic factors are a family of proteins that promote the growth and survival of both developing and mature neurons. Extensive preclinical studies have demonstrated neuroprotective properties conferred by ciliary neurotrophic factor (CNTF) in a variety of neuron types across several species. Neuroprotection that CNTF confers slows or prevents neuron loss and appears to be agnostic to the nature of the neurodegenerative mutation or injury. However, translation of these studies to the clinic remains a challenge due in part to delivery barriers inherent to the central nervous system and the short half-life of CNTF. The molecular effect of CNTF delivered by a variety of strategies in model systems has been extensively studied in the neural retina. Long-term retinal neuroprotection has been documented using encapsulated cells that have been genetically modified to produce a stable source of CNTF. Clinical trials have shown that CNTF is well tolerated for use in the human retina. This review focuses on the mechanism of action of CNTF and its potential as a therapeutic agent in retinal disease, with a focus on macular telangiectasia type 2 where CNTF has shown efficacy in slowing the rate of ellipsoid zone loss.</p>\",\"PeriodicalId\":11132,\"journal\":{\"name\":\"Cytokine & Growth Factor Reviews\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytokine & Growth Factor Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cytogfr.2025.06.005\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine & Growth Factor Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cytogfr.2025.06.005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Neuroprotective properties of ciliary neurotrophic factor in the retina for the treatment of macular telangiectasia type 2.
Neurotrophic factors are a family of proteins that promote the growth and survival of both developing and mature neurons. Extensive preclinical studies have demonstrated neuroprotective properties conferred by ciliary neurotrophic factor (CNTF) in a variety of neuron types across several species. Neuroprotection that CNTF confers slows or prevents neuron loss and appears to be agnostic to the nature of the neurodegenerative mutation or injury. However, translation of these studies to the clinic remains a challenge due in part to delivery barriers inherent to the central nervous system and the short half-life of CNTF. The molecular effect of CNTF delivered by a variety of strategies in model systems has been extensively studied in the neural retina. Long-term retinal neuroprotection has been documented using encapsulated cells that have been genetically modified to produce a stable source of CNTF. Clinical trials have shown that CNTF is well tolerated for use in the human retina. This review focuses on the mechanism of action of CNTF and its potential as a therapeutic agent in retinal disease, with a focus on macular telangiectasia type 2 where CNTF has shown efficacy in slowing the rate of ellipsoid zone loss.
期刊介绍:
Cytokine & Growth Factor Reviews is a leading publication that focuses on the dynamic fields of growth factor and cytokine research. Our journal offers a platform for authors to disseminate thought-provoking articles such as critical reviews, state-of-the-art reviews, letters to the editor, and meeting reviews.
We aim to cover important breakthroughs in these rapidly evolving areas, providing valuable insights into the multidisciplinary significance of cytokines and growth factors. Our journal spans various domains including signal transduction, cell growth and differentiation, embryonic development, immunology, tumorigenesis, and clinical medicine.
By publishing cutting-edge research and analysis, we aim to influence the way researchers and experts perceive and understand growth factors and cytokines. We encourage novel expressions of ideas and innovative approaches to organizing content, fostering a stimulating environment for knowledge exchange and scientific advancement.