Cytokine & Growth Factor Reviews最新文献

筛选
英文 中文
Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death Z-DNA 结合蛋白 1 协调先天免疫和炎症细胞死亡。
IF 9.3 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-06-01 DOI: 10.1016/j.cytogfr.2024.03.005
Qixiang Song , Yuhang Fan , Huali Zhang , Nian Wang
{"title":"Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death","authors":"Qixiang Song ,&nbsp;Yuhang Fan ,&nbsp;Huali Zhang ,&nbsp;Nian Wang","doi":"10.1016/j.cytogfr.2024.03.005","DOIUrl":"10.1016/j.cytogfr.2024.03.005","url":null,"abstract":"<div><p>Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (<em>e.g.</em>, the production of IFN-I and pro-inflammatory cytokines) and -independent (<em>e.g.</em>, the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 15-29"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140317987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs 成纤维细胞生长因子/成纤维细胞生长因子受体的糖基化:调节细胞信号程序的甜蜜密码。
IF 9.3 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-06-01 DOI: 10.1016/j.cytogfr.2024.04.001
Aleksandra Gędaj, Paulina Gregorczyk, Dominika Żukowska, Aleksandra Chorążewska, Krzysztof Ciura, Marta Kalka, Natalia Porębska, Łukasz Opaliński
{"title":"Glycosylation of FGF/FGFR: An underrated sweet code regulating cellular signaling programs","authors":"Aleksandra Gędaj,&nbsp;Paulina Gregorczyk,&nbsp;Dominika Żukowska,&nbsp;Aleksandra Chorążewska,&nbsp;Krzysztof Ciura,&nbsp;Marta Kalka,&nbsp;Natalia Porębska,&nbsp;Łukasz Opaliński","doi":"10.1016/j.cytogfr.2024.04.001","DOIUrl":"10.1016/j.cytogfr.2024.04.001","url":null,"abstract":"<div><p>Fibroblast growth factors (FGFs) and their receptors (FGFRs) constitute plasma-membrane localized signaling hubs that transmit signals from the extracellular environment to the cell interior, governing pivotal cellular processes like motility, metabolism, differentiation, division and death. FGF/FGFR signaling is critical for human body development and homeostasis; dysregulation of FGF/FGFR units is observed in numerous developmental diseases and in about 10% of human cancers. Glycosylation is a highly abundant posttranslational modification that is critical for physiological and pathological functions of the cell. Glycosylation is also very common within FGF/FGFR signaling hubs. Vast majority of FGFs (15 out of 22 members) are N-glycosylated and few FGFs are O-glycosylated. Glycosylation is even more abundant within FGFRs; all FGFRs are heavily N-glycosylated in numerous positions within their extracellular domains. A growing number of studies points on the multiple roles of glycosylation in fine-tuning FGF/FGFR signaling. Glycosylation modifies secretion of FGFs, determines their stability and affects interaction with FGFRs and co-receptors. Glycosylation of FGFRs determines their intracellular sorting, constitutes autoinhibitory mechanism within FGFRs and adjusts FGF and co-receptor recognition. Sugar chains attached to FGFs and FGFRs constitute also a form of code that is differentially decrypted by extracellular lectins, galectins, which transform FGF/FGFR signaling at multiple levels. This review focuses on the identified functions of glycosylation within FGFs and FGFRs and discusses their relevance for the cell physiology in health and disease.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 39-55"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610124000340/pdfft?md5=e4b6fce3e729f559c586c05301ce1a09&pid=1-s2.0-S1359610124000340-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140891806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
When pyro(ptosis) meets palm(itoylation) 当 "火烧"(ptosis)遇到 "棕榈"(itoylation)
IF 9.3 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-06-01 DOI: 10.1016/j.cytogfr.2024.03.001
Lu Jiang , Zirui Wang , Ting Xu , Leiliang Zhang
{"title":"When pyro(ptosis) meets palm(itoylation)","authors":"Lu Jiang ,&nbsp;Zirui Wang ,&nbsp;Ting Xu ,&nbsp;Leiliang Zhang","doi":"10.1016/j.cytogfr.2024.03.001","DOIUrl":"10.1016/j.cytogfr.2024.03.001","url":null,"abstract":"<div><p>Pyroptosis, a programmed cell death process, is vital for the immune response against microbial infections and internal danger signals. Recent studies have highlighted the importance of protein palmitoylation, a modification that involves attaching palmitate to cysteine residues, in regulating key proteins involved in pyroptosis. Palmitoylation of cGAS at residue C474 by ZDHHC18 affects its enzymatic activity and DNA binding ability. Similarly, ZDHHC9 promotes cGAS activity through palmitoylation at residues C404/405. NLRP3 palmitoylation at residue C844, mediated by ZDHHC12, impacts its stability and interactions with other proteins, crucial for activating the NLRP3 inflammasome and triggering inflammation. However, the role of ZDHHC5 in NLRP3 palmitoylation remains uncertain due to conflicting findings. Palmitoylation at C88/91 is essential for STING activation and induction of type I interferons. It modulates the formation of multimeric complexes and downstream signaling pathways. GSDMD palmitoylation at C191 is necessary for pore formation and membrane translocation, while GSDME palmitoylation at C407/408 is associated with drug-induced pyroptosis. Moreover, palmitoylation of NOD1 and NOD2 influences their membrane recruitment and immune signaling pathways in response to bacterial peptidoglycans, acting as upstream regulators of pyroptosis. This review summarizes the important roles for palmitoylation in regulating the function of key pyroptosis-related proteins, shedding light on the intricate mechanisms governing immune responses and inflammation.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 30-38"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140054973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer 白细胞介素和干扰素在基于间充质基质干细胞的癌症基因疗法中的应用。
IF 9.3 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-06-01 DOI: 10.1016/j.cytogfr.2024.03.002
Urban Švajger , Urška Kamenšek
{"title":"Interleukins and interferons in mesenchymal stromal stem cell-based gene therapy of cancer","authors":"Urban Švajger ,&nbsp;Urška Kamenšek","doi":"10.1016/j.cytogfr.2024.03.002","DOIUrl":"10.1016/j.cytogfr.2024.03.002","url":null,"abstract":"<div><p>The tumor microenvironment is importantly shaped by various cytokines, where interleukins (ILs) and interferons (IFNs) shape the balance of immune activity within tumor niche and associated lymphoid organs. Their importance in activation and tuning of both innate and adaptive immune responses prompted their use in several clinical trials, albeit with limited therapeutic efficacy and risk of toxicity due to systemic administration. Increasing preclinical evidence suggests that local delivery of ILs and IFNs could significantly increase their effectiveness, while simultaneously attenuate the known side effects and issues related to their biological activity. A prominent way to achieve this is to use cell-based delivery vehicles. For this purpose, mesenchymal stromal stem cells (MSCs) are considered an almost ideal candidate. Namely, MSCs can be obtained in large quantities and from obtainable sources (e.g. umbilical cord or adipose tissue), their <em>ex vivo</em> expansion is relatively straightforward compared to other cell types and they possess very low immunogenicity making them suitable for allogeneic use. Importantly, MSCs have shown an intrinsic capacity to respond to tumor-directed chemotaxis. This review provides a focused and detailed discussion on MSC-based gene therapy using ILs and IFNs, engineering techniques and insights on potential future advancements.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 76-90"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling the role of IL-17: Therapeutic insights and cardiovascular implications 揭示 IL-17 的作用:治疗见解和对心血管的影响。
IF 9.3 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-06-01 DOI: 10.1016/j.cytogfr.2024.05.001
Kexin Jiang , Yanjiani Xu , Yan Wang , Nanhao Yin , Fangyang Huang , Mao Chen
{"title":"Unveiling the role of IL-17: Therapeutic insights and cardiovascular implications","authors":"Kexin Jiang ,&nbsp;Yanjiani Xu ,&nbsp;Yan Wang ,&nbsp;Nanhao Yin ,&nbsp;Fangyang Huang ,&nbsp;Mao Chen","doi":"10.1016/j.cytogfr.2024.05.001","DOIUrl":"10.1016/j.cytogfr.2024.05.001","url":null,"abstract":"<div><p>Interleukin-17 (IL-17), a pivotal cytokine in immune regulation, has attracted significant attention in recent years due to its roles in various physiological and pathological processes. This review explores IL-17 in immunological context, emphasizing its structure, production, and signaling pathways. Specifically, we explore its involvement in inflammatory diseases and autoimmune diseases, with a notable focus on its emerging implications in cardiovascular system. Through an array of research insights, IL-17 displays multifaceted functions yet awaiting comprehensive discovery. Highlighting therapeutic avenues, we scrutinize the efficacy and clinical application of four marketed IL-17 mAbs along other targeted therapies, emphasizing their potential in immune-mediated disease management. Additionally, we discussed the novel IL-17D-CD93 axis, elucidating recent breakthroughs in their biological function and clinical implications, inviting prospects for transformative advancements in immunology and beyond.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"77 ","pages":"Pages 91-103"},"PeriodicalIF":9.3,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140912135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cytokines and soluble mediators as architects of tumor microenvironment reprogramming in cancer therapy 细胞因子和可溶性介质是癌症治疗中肿瘤微环境重编程的设计师
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-28 DOI: 10.1016/j.cytogfr.2024.02.003
Suling Xu , Qingqing Wang , Wenxue Ma
{"title":"Cytokines and soluble mediators as architects of tumor microenvironment reprogramming in cancer therapy","authors":"Suling Xu ,&nbsp;Qingqing Wang ,&nbsp;Wenxue Ma","doi":"10.1016/j.cytogfr.2024.02.003","DOIUrl":"10.1016/j.cytogfr.2024.02.003","url":null,"abstract":"<div><p>Navigating the intricate landscape of the tumor microenvironment (TME) unveils a pivotal arena for cancer therapeutics, where cytokines and soluble mediators emerge as double-edged swords in the fight against cancer. This review ventures beyond traditional perspectives, illuminating the nuanced interplay of these elements as both allies and adversaries in cancer dynamics. It critically evaluates the evolving paradigms of TME reprogramming, spotlighting innovative strategies that target the sophisticated network of cytokines and mediators. Special focus is placed on unveiling the therapeutic potential of novel cytokines and mediators, particularly their synergistic interactions with extracellular vesicles, which represent underexplored conduits for therapeutic targeting. Addressing a significant gap in current research, we explore the untapped potential of these biochemical players in orchestrating immune responses, tumor proliferation, and metastasis. The review advocates for a paradigm shift towards exploiting these dynamic interactions within the TME, aiming to transcend conventional treatments and pave the way for a new era of precision oncology. Through a critical synthesis of recent advancements, we highlight the imperative for innovative approaches that harness the full spectrum of cytokine and mediator activities, setting the stage for breakthrough therapies that offer heightened specificity, reduced toxicity, and improved patient outcomes.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"76 ","pages":"Pages 12-21"},"PeriodicalIF":13.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140016975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semaphorins and the bone marrow microenvironment: New candidates that influence the hematopoietic system 半合成蛋白与骨髓微环境:影响造血系统的新候选者
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-27 DOI: 10.1016/j.cytogfr.2024.02.002
Carlos E. da Silva Gonçalves, Ricardo A. Fock
{"title":"Semaphorins and the bone marrow microenvironment: New candidates that influence the hematopoietic system","authors":"Carlos E. da Silva Gonçalves,&nbsp;Ricardo A. Fock","doi":"10.1016/j.cytogfr.2024.02.002","DOIUrl":"10.1016/j.cytogfr.2024.02.002","url":null,"abstract":"<div><p>The bone marrow is a haven for hematopoietic and non-hematopoietic cells, creating complex micro-anatomical regions called niches. These distinct niches all participate in an intricate orchestra of cellular interactions that regulates the hematopoietic stem cell and its progenies. In this review, we provide a detailed description of the three most well-known bone marrow niches and their participation in hematopoiesis. We use pre-clinical data, including different <em>in vitro</em> and <em>in vivo</em> studies to discuss how a group of proteins called Semaphorins could potentially modulate both hematopoietic and non-hematopoietic cells, establishing links between the niches, semaphorins, and hematopoietic regulation. Thus, here we provide a deep dive into the inner functioning of the bone marrow and discuss the overarching implications that semaphorins might have on blood formation.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"76 ","pages":"Pages 22-29"},"PeriodicalIF":13.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140010172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting NKG2D/NKG2DL axis in multiple myeloma therapy 靶向 NKG2D/NKG2DL 轴治疗多发性骨髓瘤
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-15 DOI: 10.1016/j.cytogfr.2024.02.001
Zhaoyun Liu , Hao Wang , Hui Liu , Kai Ding , Hongli Shen , Xianghong Zhao , Rong Fu
{"title":"Targeting NKG2D/NKG2DL axis in multiple myeloma therapy","authors":"Zhaoyun Liu ,&nbsp;Hao Wang ,&nbsp;Hui Liu ,&nbsp;Kai Ding ,&nbsp;Hongli Shen ,&nbsp;Xianghong Zhao ,&nbsp;Rong Fu","doi":"10.1016/j.cytogfr.2024.02.001","DOIUrl":"10.1016/j.cytogfr.2024.02.001","url":null,"abstract":"<div><p>Immune effector cells in patients with multiple myeloma (MM) are at the forefront of many immunotherapy treatments, and several methods have been developed to fully utilise the antitumour potential of immune cells. T and NK cell-derived immune lymphocytes both expressed activating NK receptor group 2 member D(NKG2D). This receptor can identify eight distinct NKG2D ligands (NKG2DL), including major histocompatibility complex class I (MHC) chain-related protein A and B (MICA and MICB). Their binding to NKG2D triggers effector roles in T and NK cells. NKG2DL is polymorphic in MM cells. The decreased expression of NKG2DL on the cell surface is explained by multiple mechanisms of tumour immune escape. In this review, we discuss the mechanisms by which the NKG2D/NKG2DL axis regulates immune effector cells and strategies for promoting NKG2DL expression and inhibiting its release in multiple myeloma and propose therapeutic strategies that increase the expression of NKG2DL in MM cells while enhancing the activation and killing function of NK cells.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"76 ","pages":"Pages 1-11"},"PeriodicalIF":13.0,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S135961012400011X/pdfft?md5=a54857b555d6f936945598982ff17d91&pid=1-s2.0-S135961012400011X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139878342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An emerging paradigm of CXCL12 involvement in the metastatic cascade CXCL12参与转移级联反应的一种新兴范式。
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.10.003
Dimitra P. Anastasiadou , Agathe Quesnel , Camille L. Duran , Panagiota S. Filippou , George S. Karagiannis
{"title":"An emerging paradigm of CXCL12 involvement in the metastatic cascade","authors":"Dimitra P. Anastasiadou ,&nbsp;Agathe Quesnel ,&nbsp;Camille L. Duran ,&nbsp;Panagiota S. Filippou ,&nbsp;George S. Karagiannis","doi":"10.1016/j.cytogfr.2023.10.003","DOIUrl":"10.1016/j.cytogfr.2023.10.003","url":null,"abstract":"<div><p>The chemokine CXCL12, also known as stromal cell-derived factor 1 (SDF1), has emerged as a pivotal regulator in the intricate molecular networks driving cancer progression. As an influential factor in the tumor microenvironment, CXCL12 plays a multifaceted role that spans beyond its traditional role as a chemokine inducing invasion and metastasis. Indeed, CXCL12 has been assigned functions related to epithelial-to-mesenchymal transition, cancer cell stemness, angiogenesis, and immunosuppression, all of which are currently viewed as specialized biological programs contributing to the “metastatic cascade” among other cancer hallmarks. Its interaction with its cognate receptor, CXCR4, initiates a cascade of events that not only shapes the metastatic potential of tumor cells but also defines the niches within the secondary organs that support metastatic colonization. Given the profound implications of CXCL12 in the metastatic cascade, understanding its mechanistic underpinnings is of paramount importance for the targeted elimination of rate-limiting steps in the metastatic process. This review aims to provide a comprehensive overview of the current knowledge surrounding the role of CXCL12 in cancer metastasis, especially its molecular interactions rationalizing its potential as a therapeutic target.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 12-30"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610123000771/pdfft?md5=a9c26f438d02bad3bc02b25c430593f8&pid=1-s2.0-S1359610123000771-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72208738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy 在癌症免疫疗法的现代工具箱中提高白细胞介素-18生物活性的生物工程策略。
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.09.005
Mojtaba Taheri , Hossein Abdul Tehrani , Fatemeh Daliri , Mona Alibolandi , Masoud Soleimani , Alireza Shoari , Ehsan Arefian , Mohammad Ramezani
{"title":"Bioengineering strategies to enhance the interleukin-18 bioactivity in the modern toolbox of cancer immunotherapy","authors":"Mojtaba Taheri ,&nbsp;Hossein Abdul Tehrani ,&nbsp;Fatemeh Daliri ,&nbsp;Mona Alibolandi ,&nbsp;Masoud Soleimani ,&nbsp;Alireza Shoari ,&nbsp;Ehsan Arefian ,&nbsp;Mohammad Ramezani","doi":"10.1016/j.cytogfr.2023.09.005","DOIUrl":"10.1016/j.cytogfr.2023.09.005","url":null,"abstract":"<div><p>Cytokines are the first modern immunotherapeutic agents used for activation immunotherapy. Interleukin-18 (IL-18) has emerged as a potent anticancer immunostimulatory cytokine over the past three decades. IL-18, structurally is a stable protein with very low toxicity at biological doses. IL-18 promotes the process of antigen presentation and also enhances innate and acquired immune responses. It can induce the production of proinflammatory cytokines and increase tumor infiltration of effector immune cells to revert the immunosuppressive milieu of tumors. Furthermore, IL-18 can reduce tumorigenesis, suppress tumor angiogenesis, and induce tumor cell apoptosis. These characteristics present IL-18 as a promising option for cancer immunotherapy. Although several preclinical studies have reported the immunotherapeutic potential of IL-18, clinical trials using it as a monotherapy agent have reported disappointing results. These results may be due to some biological characteristics of IL-18. Several bioengineering approaches have been successfully used to correct its defects as a bioadjuvant. Currently, the challenge with this anticancer immunotherapeutic agent is mainly how to use its capabilities in a rational combinatorial therapy for clinical applications. The present study discussed the strengths and weaknesses of IL-18 as an immunotherapeutic agent, followed by comprehensive review of various promising bioengineering approaches that have been used to overcome its disadvantages. Finally, this study highlights the promising application of IL-18 in modern combinatorial therapies, such as chemotherapy, immune checkpoint blockade therapy, cell-based immunotherapy and cancer vaccines to guide future studies, circumventing the barriers to administration of IL-18 for clinical applications, and bring it to fruition as a potent immunotherapy agent in cancer treatment.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 65-80"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41182204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信