Cytokine & Growth Factor Reviews最新文献

筛选
英文 中文
Targeting interleukin-17 in radiation-induced toxicity and cancer progression 瞄准白细胞介素-17 在辐射诱导的毒性和癌症进展中的作用
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2024.01.001
Piyush Baindara
{"title":"Targeting interleukin-17 in radiation-induced toxicity and cancer progression","authors":"Piyush Baindara","doi":"10.1016/j.cytogfr.2024.01.001","DOIUrl":"10.1016/j.cytogfr.2024.01.001","url":null,"abstract":"<div><p>Recent strategies to combine chemoradiation with immunotherapy to treat locally advanced lung cancer have improved five-year survival outcomes. However, collateral toxicity to healthy lungs, esophagus, cardiac, and vascular tissue continues to limit the effectiveness of curative-intent thoracic radiation (tRT). It is necessary to gain a deeper comprehension of the fundamental mechanisms underlying inflammation-mediated radiation-induced damage to normal cells. Several cells have been linked in published studies to the release of cytokines and chemokines after radiation therapy. Several inflammatory mediators, such as IL-1, IL-6, TNF-α, and TGF-β, also cause the production of Interleukin-17 (IL-17), a cytokine that is essential for maintaining immunological homeostasis and plays a role in the toxicity caused by radiation therapy. However, currently, the role of IL-17 in RT-induced toxicity in conjunction with cancer progression remains poorly understood. This review provides an overview of the most recent data from the literature implicating IL-17 in radiation-mediated tissue injuries and the efficacy of tRT in lung cancer, as well as its potential as a therapeutic target for interventions to reduce the side effects of tRT with curative intent and to boost an anti-tumor immune response to improve treatment outcomes. IL-17 may also act as a biomarker for predicting the effectiveness of a given treatment as well as the toxicity caused by tRT.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 31-39"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139458439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CDK4/6 inhibition in hormone receptor-positive/HER2-negative breast cancer: Biological and clinical aspects CDK4/6在激素受体阳性/HER2阴性乳腺癌症中的抑制作用:生物学和临床方面。
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.10.001
Demi Wekking , Vera Piera Leoni , Matteo Lambertini , Mariele Dessì , Andrea Pretta , Andrea Cadoni , Luigi Atzori , Mario Scartozzi , Cinzia Solinas
{"title":"CDK4/6 inhibition in hormone receptor-positive/HER2-negative breast cancer: Biological and clinical aspects","authors":"Demi Wekking ,&nbsp;Vera Piera Leoni ,&nbsp;Matteo Lambertini ,&nbsp;Mariele Dessì ,&nbsp;Andrea Pretta ,&nbsp;Andrea Cadoni ,&nbsp;Luigi Atzori ,&nbsp;Mario Scartozzi ,&nbsp;Cinzia Solinas","doi":"10.1016/j.cytogfr.2023.10.001","DOIUrl":"10.1016/j.cytogfr.2023.10.001","url":null,"abstract":"<div><p>A dysregulated cell division, one of the key hallmarks of cancer, results in uncontrolled cellular proliferation. This aberrant process, mediated by a dysregulated cell-cycle machinery and overactivation of cyclin-dependent kinase (CDK) 4 and 6, can potentially promote tumorigenesis. The clinical application of CDK 4/6 inhibitors, developed to inhibit cell-cycle progression, in the treatment regimens of breast cancer (BC) patients is expanding. Currently, three agents, ribociclib, palbociclib, and abemaciclib, are approved for treating patients with hormone receptor-positive and human epidermal growth factor receptor 2 (HER2)-negative metastatic BC. In addition, abemaciclib is FDA and EMA-approved for patients with hormone receptor-positive HER2-negative, node-positive, early BC at high risk of recurrence. Emerging data suggest potential anti-tumor effects beyond cell cycle arrest, providing novel insights into the agent’s mechanisms of action. As a result, a broader application of the CDK4/6 inhibitors in patients with cancer is achieved, contributing to enhanced optimized treatment in the adjuvant and neoadjuvant settings. Herein, the immunomodulatory activities of CDK4/6 inhibitors, their impact on the cell’s metabolic state, and the effect on the decision of the cell to undergo quiescence or senescence are discussed. Moreover, this review provides an update on clinical trial outcomes and the differences in the underlying mechanisms between the distinct CDK4/6 inhibitors.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 57-64"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610123000758/pdfft?md5=82544afa8e0d73ab216a2708d880b682&pid=1-s2.0-S1359610123000758-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41194408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic implications of the interplay between interferons and ER in breast cancer 干扰素与ER相互作用对乳腺癌的治疗意义
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2024.01.002
Nataša Todorović-Raković , Jonathan R. Whitfield
{"title":"Therapeutic implications of the interplay between interferons and ER in breast cancer","authors":"Nataša Todorović-Raković ,&nbsp;Jonathan R. Whitfield","doi":"10.1016/j.cytogfr.2024.01.002","DOIUrl":"10.1016/j.cytogfr.2024.01.002","url":null,"abstract":"<div><p>The involvement of interferons (IFNs) in various diseases, including breast cancer, has sparked controversy due to their diverse roles in immunity and significant impact on pathological mechanisms. In the context of breast cancer, the heightened expression of endogenous IFNs has been linked to anti-tumor activity and a favorable prognosis for patients. Within the tumor tissue and microenvironment, IFNs initiate a cascade of molecular events involving numerous factors, which can lead to either cooperative or repressive interactions. The specific functions of IFNs in breast cancer vary depending on the two major disease phenotypes: hormone dependent (or responsive) and hormone independent (or unresponsive) breast cancer. Hormone dependence is determined by the presence of estrogen receptors (ERs). The interplay between the IFN and ER signaling pathways, and the involvement of intermediate factors such as NFκB, are areas that have been somewhat under-researched, but that hold potential importance for the understanding and treatment of breast cancer. This review aims to provide a comprehensive overview of the actions of IFNs in breast cancer, particularly in relation to the different breast cancer phenotypes and the significance of comprehending the underlying mechanisms. Furthermore, the use of IFN-based therapies in cancer treatment remains a topic of debate and has not yet gained widespread acceptance. However, emerging discoveries may redirect focus towards the potential of IFN-based therapies.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 119-125"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139103636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Signaling crosstalk between mesenchymal stem cells and tumor cells: Implications for tumor suppression or progression 间充质干细胞与肿瘤细胞之间的信号交叉:肿瘤抑制或进展的意义
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2024.01.004
Mojtaba Taheri , Hossein Abdul Tehrani , Sadegh Dehghani , Alireza Rajabzadeh , Mona Alibolandi , Nina Zamani , Ehsan Arefian , Mohammad Ramezani
{"title":"Signaling crosstalk between mesenchymal stem cells and tumor cells: Implications for tumor suppression or progression","authors":"Mojtaba Taheri ,&nbsp;Hossein Abdul Tehrani ,&nbsp;Sadegh Dehghani ,&nbsp;Alireza Rajabzadeh ,&nbsp;Mona Alibolandi ,&nbsp;Nina Zamani ,&nbsp;Ehsan Arefian ,&nbsp;Mohammad Ramezani","doi":"10.1016/j.cytogfr.2024.01.004","DOIUrl":"10.1016/j.cytogfr.2024.01.004","url":null,"abstract":"<div><p>Mesenchymal stem cells (MSCs) have been extensively used in various therapeutic applications over the last two decades, particularly in regenerative medicine and cancer treatment. MSCs have the ability to differentiate into mesodermal and non-mesodermal lineages, which makes them a popular choice in tissue engineering and regenerative medicine. Studies have shown that MSCs have inherent tumor-suppressive properties and can affect the behavior of multiple cells contributing to tumor development. Additionally, MSCs possess a tumor tropism property and have a hypoimmune nature. The intrinsic features of MSCs along with their potential to undergo genetic manipulation and be loaded with various anticancer therapeutics have motivated researchers to use them in different cancer therapy approaches without considering their complex dynamic biological aspects. However, despite their desirable features, several reports have shown that MSCs possess tumor-supportive properties. These contradictory results signify the sophisticated nature of MSCs and warn against the potential therapeutic applications of MSCs. Therefore, researchers should meticulously consider the biological properties of MSCs in preclinical and clinical studies to avoid any undesirable outcomes. This manuscript reviews preclinical studies on MSCs and cancer from the last two decades, discusses how MSC properties affect tumor progression and explains the mechanisms behind tumor suppressive and supportive functions. It also highlights critical cellular pathways that could be targeted in future studies to improve the safety and effectiveness of MSC-based therapies for cancer treatment. The insights obtained from this study will pave the way for further clinical research on MSCs and development of more effective cancer treatments.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"76 ","pages":"Pages 30-47"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139668971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the roles of heat shock proteins in liver cancer 解码热休克蛋白在肝癌中的作用
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.12.003
Chen Sun , Qi Pan , Mingyang Du , Jiahe Zheng , Ming Bai , Wei Sun
{"title":"Decoding the roles of heat shock proteins in liver cancer","authors":"Chen Sun ,&nbsp;Qi Pan ,&nbsp;Mingyang Du ,&nbsp;Jiahe Zheng ,&nbsp;Ming Bai ,&nbsp;Wei Sun","doi":"10.1016/j.cytogfr.2023.12.003","DOIUrl":"10.1016/j.cytogfr.2023.12.003","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is one of the most common gastrointestinal malignancies, characterized by insidious onset and high propensity for metastasis and recurrence. Apart from surgical resection, there are no effective curative methods for HCC in recent years, due to resistance to radiotherapy and chemotherapy. Heat shock proteins (HSP) play a crucial role in maintaining cellular homeostasis and normal organism development as molecular chaperones for intracellular proteins. Both basic research and clinical data have shown that HSPs are crucial participants in the HCC microenvironment, as well as the occurrence, development, metastasis, and resistance to radiotherapy and chemotherapy in various malignancies, particularly liver cancer. This review aims to discuss the molecular mechanisms and potential clinical value of HSPs in HCC, which may provide new insights for HSP-based therapeutic interventions for HCC.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 81-92"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139053320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of COVID-19 on cancer patients COVID-19对癌症患者的影响
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.11.004
Demi Wekking , Thilini H. Senevirathne , Josie L. Pearce , Marco Aiello , Mario Scartozzi , Matteo Lambertini , Pushpamali De Silva , Cinzia Solinas
{"title":"The impact of COVID-19 on cancer patients","authors":"Demi Wekking ,&nbsp;Thilini H. Senevirathne ,&nbsp;Josie L. Pearce ,&nbsp;Marco Aiello ,&nbsp;Mario Scartozzi ,&nbsp;Matteo Lambertini ,&nbsp;Pushpamali De Silva ,&nbsp;Cinzia Solinas","doi":"10.1016/j.cytogfr.2023.11.004","DOIUrl":"10.1016/j.cytogfr.2023.11.004","url":null,"abstract":"<div><p>The COVID-19 pandemic poses a significant challenge for individuals with compromised immune systems, such as patients with cancer, as they face a heightened susceptibility to severe infections compared to the general population. Such severe infections substantially increase the risk of morbidity and mortality among these patients. Notable risk factors for mortality include advanced age (&gt; 70 years), current or past smoking history, advanced disease stage, the use of cytotoxic chemotherapy, and an Eastern Cooperative Oncology Group (ECOG) score of 2 or higher. Multiple types of vaccines have been developed and implemented, demonstrating remarkable efficacy in preventing infections. However, there have been observable reductions in their ability to elicit an immune response, particularly among individuals with hematological malignancies. The situation becomes more challenging due to the emergence of viral variants of concern (VOCs). Despite the increase in neutralizing antibody levels after vaccination, they remain lower in response to these evolving variants. The need for booster vaccinations has become apparent, particularly for this vulnerable population, due to the suboptimal immune response and waning of immunity post-vaccination. Examining and comprehending how the immune system reacts to various vaccination regimens for SARS-CoV-2 and its VOCs in cancer patients is crucial for designing clinical and public health strategies. This review aims to provide an updated overview of the effectiveness of COVID-19 vaccines in cancer patients, including those undergoing treatments such as hematopoietic stem cell transplantation (HCT) or chimeric antigen receptor (CAR) T cell therapy, by exploring the extent of both humoral and cellular immune responses to COVID-19 vaccination. Furthermore, it outlines risk factors and potential biomarkers that are associated with severe SARS-CoV-2 infection and vaccine responses, and offers suggestions for improving SARS-CoV-2 protection in cancer patients.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 110-118"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Harnessing the potential of CD40 agonism in cancer therapy 利用CD40激动作用在癌症治疗中的潜力
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.11.002
Yang Zhou , Ann Richmond , Chi Yan
{"title":"Harnessing the potential of CD40 agonism in cancer therapy","authors":"Yang Zhou ,&nbsp;Ann Richmond ,&nbsp;Chi Yan","doi":"10.1016/j.cytogfr.2023.11.002","DOIUrl":"10.1016/j.cytogfr.2023.11.002","url":null,"abstract":"<div><p>CD40 is a member of the tumor necrosis factor (TNF) receptor superfamily of receptors expressed on a variety of cell types. The CD40–CD40L interaction gives rise to many immune events, including the licensing of dendritic cells to activate CD8<sup>+</sup> effector T cells, as well as the facilitation of B cell activation, proliferation, and differentiation. In malignant cells, the expression of CD40 varies among cancer types, mediating cellular proliferation, apoptosis, survival and the secretion of cytokines and chemokines. Agonistic human anti-CD40 antibodies are emerging as an option for cancer treatment, and early-phase clinical trials explored its monotherapy or combination with radiotherapy, chemotherapy, immune checkpoint blockade, and other immunomodulatory approaches. In this review, we present the current understanding of the mechanism of action for CD40, along with results from the clinical development of agonistic human CD40 antibodies in cancer treatment (selicrelumab, CDX-1140, APX005M, mitazalimab, 2141-V11, SEA-CD40, LVGN7409, and bispecific antibodies). This review also examines the safety profile of CD40 agonists in both preclinical and clinical settings, highlighting optimized dosage levels, potential adverse effects, and strategies to mitigate them.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 40-56"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610123000795/pdfft?md5=e2336dcb3765155f17297d0ef320fa9c&pid=1-s2.0-S1359610123000795-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ferroptosis in cancer immunity and immunotherapy: Multifaceted interplay and clinical implications 癌症免疫和免疫疗法中的铁蛋白沉积:多方面的相互作用和临床意义
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.08.004
Xiaoqian Zhai , Yiyun Lin , Lingling Zhu , Yuqing Wang , Jiabi Zhang , Jiewei Liu , Lu Li , Xiaojie Lu
{"title":"Ferroptosis in cancer immunity and immunotherapy: Multifaceted interplay and clinical implications","authors":"Xiaoqian Zhai ,&nbsp;Yiyun Lin ,&nbsp;Lingling Zhu ,&nbsp;Yuqing Wang ,&nbsp;Jiabi Zhang ,&nbsp;Jiewei Liu ,&nbsp;Lu Li ,&nbsp;Xiaojie Lu","doi":"10.1016/j.cytogfr.2023.08.004","DOIUrl":"10.1016/j.cytogfr.2023.08.004","url":null,"abstract":"<div><p>Ferroptosis is a type of cell death characterized by iron-dependent phospholipid peroxidation and reactive oxygen species overproduction. Ferroptosis induces immunogenic cell death and elicits anti-tumor immune responses, playing an important role in cancer immunotherapy. Ferroptosis suppression in cancer cells impairs its immunotherapeutic efficacy. To overcome this issue, ferroptosis inducers (FINs) have been combined with other cancer therapies to create an anti-tumor immune microenvironment. However, the ferroptosis-based crosstalk between immune and tumor cells is complex because oxidative products released by ferroptotic tumor cells impair the functions of anti-tumor immune cells, resulting in immunotherapeutic resistance. In the present article, we have reviewed ferroptosis in tumor and immune cells and summarized the crosstalk between ferroptotic tumor cells and the immune microenvironment. Based on the existing literature, we have further discussed future perspectives on opportunities for combining ferroptosis-targeted therapies with cancer immunotherapies.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 101-109"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359610123000515/pdfft?md5=c015942f30fa49f8abdee35054c3a07c&pid=1-s2.0-S1359610123000515-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10194164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis 免疫抑制肿瘤微环境与子宫肌瘤:在胶原合成中的作用。
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.10.002
Eslam E Saad , Rachel Michel , Mostafa A. Borahay
{"title":"Immunosuppressive tumor microenvironment and uterine fibroids: Role in collagen synthesis","authors":"Eslam E Saad ,&nbsp;Rachel Michel ,&nbsp;Mostafa A. Borahay","doi":"10.1016/j.cytogfr.2023.10.002","DOIUrl":"10.1016/j.cytogfr.2023.10.002","url":null,"abstract":"<div><p>Uterine fibroids (UF), also called uterine leiomyoma, is one of the most prevalent uterine tumors. UF represents a serious women's health global problem with a significant physical, emotional, and socioeconomic impact. Risk factors for UF include racial disparities, age, race, hormonal factors, obesity, and lifestyle (diet, physical activity, and stress. There are several biological contributors to UF pathogenesis such as cellular proliferation, angiogenesis, and extracellular matrix (ECM) accumulation. This review addresses tumor immune microenvironment as a novel mediator of ECM deposition. Polarization of immune microenvironment towards the immunosuppressive phenotype has been associated with ECM deposition. Immunosuppressive cells include M2 macrophage, myeloid-derived suppressor cells (MDSCs), and Th17 cells, and their secretomes include interleukin 4 (IL-4), IL-10, IL-13, IL-17, IL-22, arginase 1, and transforming growth factor-beta (TGF-β1). The change in the immune microenvironment not only increase tumor growth but also aids in collagen synthesis and ECM disposition, which is one of the main hallmarks of UF pathogenesis. This review invites further investigations on the change in the UF immune microenvironment as well as a novel targeting approach instead of the traditional UF hormonal and supportive treatment.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 93-100"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41233201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation-targeted immunotherapy: A new perspective in cancer radiotherapy 放射靶向免疫治疗:肿瘤放疗的新方向
IF 13 2区 医学
Cytokine & Growth Factor Reviews Pub Date : 2024-02-01 DOI: 10.1016/j.cytogfr.2023.11.003
Lihui Xuan , Chenjun Bai , Zhao Ju , Jinhua Luo , Hua Guan , Ping-Kun Zhou , Ruixue Huang
{"title":"Radiation-targeted immunotherapy: A new perspective in cancer radiotherapy","authors":"Lihui Xuan ,&nbsp;Chenjun Bai ,&nbsp;Zhao Ju ,&nbsp;Jinhua Luo ,&nbsp;Hua Guan ,&nbsp;Ping-Kun Zhou ,&nbsp;Ruixue Huang","doi":"10.1016/j.cytogfr.2023.11.003","DOIUrl":"10.1016/j.cytogfr.2023.11.003","url":null,"abstract":"<div><p>In contemporary oncology, radiation therapy and immunotherapy stand as critical treatments, each with distinct mechanisms and outcomes. Radiation therapy, a key player in cancer management, targets cancer cells by damaging their DNA with ionizing radiation. Its effectiveness is heightened when used alongside other treatments like surgery and chemotherapy. Employing varied radiation types like X-rays, gamma rays, and proton beams, this approach aims to minimize damage to healthy tissue. However, it is not without risks, including potential damage to surrounding normal cells and side effects ranging from skin inflammation to serious long-term complications. Conversely, immunotherapy marks a revolutionary step in cancer treatment, leveraging the body’s immune system to target and destroy cancer cells. It manipulates the immune system’s specificity and memory, offering a versatile approach either alone or in combination with other treatments. Immunotherapy is known for its targeted action, long-lasting responses, and fewer side effects compared to traditional therapies. The interaction between radiation therapy and immunotherapy is intricate, with potential for both synergistic and antagonistic effects. Their combined use can be more effective than either treatment alone, but careful consideration of timing and sequence is essential. This review explores the impact of various radiation therapy regimens on immunotherapy, focusing on changes in the immune microenvironment, immune protein expression, and epigenetic factors, emphasizing the need for personalized treatment strategies and ongoing research to enhance the efficacy of these combined therapies in cancer care.</p></div>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":"75 ","pages":"Pages 1-11"},"PeriodicalIF":13.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138526219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信