Day 2 Mon, November 29, 2021最新文献

筛选
英文 中文
Informed Decisions Guided by GeoMechanics to Improve Drilling Performance: A Case Study from Onshore Field, Abu Dhabi; UAE 地质力学指导下的明智决策提高钻井性能——以阿布扎比陆上油田为例阿联酋
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204559-ms
S. Benmamar, S. Al Arfi, S. Perumalla, G. Salem, A. Baruno, S. Saha, Pranjal Bhatt
{"title":"Informed Decisions Guided by GeoMechanics to Improve Drilling Performance: A Case Study from Onshore Field, Abu Dhabi; UAE","authors":"S. Benmamar, S. Al Arfi, S. Perumalla, G. Salem, A. Baruno, S. Saha, Pranjal Bhatt","doi":"10.2118/204559-ms","DOIUrl":"https://doi.org/10.2118/204559-ms","url":null,"abstract":"\u0000 ADNOC (Abu Dhabi National Oil Company) recently drilled some wells in Onshore Abu Dhabi (Field-A) and encountered consistent hole instability from Umm Er Radhuma (UER) to Simsima. Thus, a GeoMechanical review was proposed to investigate the root causes, if any, and recommend possible remedies for the upcoming drilling campaign.\u0000 While detailed drilling event analysis allowed to investigate the correlation between the mud weight program and well trajectory, borehole image log analysis and geological understanding from nearby fields indicated the possible role of structural and lithological features on hole instability. Integration of drilling engineering data and regional geological knowledge helped to narrow down the possible causes of drilling challenges. Sedimentalogical review of Image logs have established some correlation between rock types and hole instability events.\u0000 Drilling experience shows there is very narrow margin for loss and/or gain to occur. There is regional geological evidence of the presence of a wide range of vuggy structures, as well as natural fractures and/or faults. These features tend to make Simsima formation heterogeneous in terms of permeability and more prone to losses. Since most fractures are parallel to SHmax direction and well was drilled towards Shmin direction, there are greater chances of encountering faults and/or fractures, which would be critically-stressed and lead to loss and/or gain situations. Geomechanical parameters helped highlight the magnitudes and orientations of principal stresses. Observations of several tight hole and stuck pipe events while tripping from Radhuma and UERB shale to Simsima seem to indicate mud weight used was insufficient. Role of multiple failure mechanisms was identified, and relevant solutions were recommended as well as implemented to achieve the drilling success.\u0000 The case study presented here emphasizes how different carbonate textures and the presence and orientation of natural fractures and/or faults within Simsima formation can impact hole instability with respect to wellbore trajectory. Proactive implementation of recommendations from this analysis on well planning and fluid design resulted in improvement of drilling performance and reduction of non-productive time in new wells.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83161755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoemulsions: A Versatile Technology for Oil and Gas Applications 纳米乳液:石油和天然气应用的通用技术
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204722-ms
N. Aljabri, Nan Shi
{"title":"Nanoemulsions: A Versatile Technology for Oil and Gas Applications","authors":"N. Aljabri, Nan Shi","doi":"10.2118/204722-ms","DOIUrl":"https://doi.org/10.2118/204722-ms","url":null,"abstract":"\u0000 Nanoemulsions (NEs) are kinetically stable emulsions with droplet size on the order of 100 nm. Many unique properties of NEs, such as stability and rheology, have attracted considerable attention in the oil industry. Here, we review applications and studies of NEs for major upstream operations, highlighting useful properties of NEs, synthesis to render these properties, and techniques to characterize them. We identify specific challenges associated with large-scale applications of NEs and directions for future studies. We first summarize useful and unique properties of NEs, mostly arising from the small droplet size. Then, we compare different methods to prepare NEs based on the magnitude of input energy, i.e., low-energy and high-energy methods. In addition, we review techniques to characterize properties of NEs, such as droplet size, volume fraction of the dispersed phase, and viscosity. Furthermore, we discuss specific applications of NEs in four areas of upstream operations, i.e., enhanced oil recovery, drilling/completion, flow assurance, and stimulation. Finally, we identify challenges to economically tailor NEs with desired properties for large-scale upstream applications and propose possible solutions to some of these challenges. NEs are kinetically stable due to their small droplet size (submicron to 100 nm). Within this size range, the rate of major destabilizing mechanisms, such as coalescence, flocculation, and Ostwald ripening, is considerably slowed down. In addition, small droplet size yields large surface-to-volume ratio, optical transparency, high diffusivity, and controllable rheology. Similar to applications in other fields (food industry, pharmaceuticals, cosmetics, etc.), the oil and gas industry can also benefit from these useful properties of NEs. Proposed functions of NEs include delivering chemicals, conditioning wellbore/reservoir conditions, and improve chemical compatibility. Therefore, we envision NEs as a versatile technology that can be applied in a variety of upstream operations. Upstream operations often target a wide range of physical and chemical conditions and are operated at different time scales. More importantly, these operations typically consume a large amount of materials. These facts not only suggest efforts to rationally engineer properties of NEs in upstream applications, but also manifest the importance to economically optimize such efforts for large-scale operations. We summarize studies and applications of NEs in upstream operations in the oil and gas industry. We review useful properties of NEs that benefit upstream applications as well as techniques to synthesize and characterize NEs. More importantly, we identify challenges and opportunities in engineering NEs for large-scale operations in different upstream applications. This work not only focuses on scientific aspects of synthesizing NEs with desired properties but also emphasizes engineering and economic consideration that is important in th","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87676194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancement in Data Engineering and Feature Processing Workflow by Using Deep Learning Techniques for the Automation of ESP Failure Root Cause Analyses 应用深度学习技术实现ESP故障根源分析自动化的数据工程和特征处理工作流程研究进展
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204566-ms
Saniya Karnik, Navya Yenuganti, Bonang Firmansyah Jusri, Supriya Gupta, Prasanna Nirgudkar, M. Mohajer, Asim Malik
{"title":"Advancement in Data Engineering and Feature Processing Workflow by Using Deep Learning Techniques for the Automation of ESP Failure Root Cause Analyses","authors":"Saniya Karnik, Navya Yenuganti, Bonang Firmansyah Jusri, Supriya Gupta, Prasanna Nirgudkar, M. Mohajer, Asim Malik","doi":"10.2118/204566-ms","DOIUrl":"https://doi.org/10.2118/204566-ms","url":null,"abstract":"\u0000 Today, Electrical Submersible Pump (ESP) failure analysis is a tedious, human-intensive, and time-consuming activity involving dismantle, inspection, and failure analysis (DIFA) for each failure. This paper presents a novel artificial intelligence workflow using an ensemble of machine learning (ML) algorithms coupled with natural language processing (NLP) and deep learning (DL). The algorithms outlined in this paper bring together structured and unstructured data across equipment, production, operations, and failure reports to automate root cause identification and analysis post breakdown. This process will result in reduced turnaround time (TAT) and human effort thus drastically improving process efficiency.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81650563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
CO2 Waterless Fracturing and Huff and Puff in Tight Oil Reservoir 致密油油藏CO2无水压裂与吞吐
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204731-ms
Weixiang Cui, Li Chen, Chunpeng Wang, Xiwen Zhang, Chao Wang
{"title":"CO2 Waterless Fracturing and Huff and Puff in Tight Oil Reservoir","authors":"Weixiang Cui, Li Chen, Chunpeng Wang, Xiwen Zhang, Chao Wang","doi":"10.2118/204731-ms","DOIUrl":"https://doi.org/10.2118/204731-ms","url":null,"abstract":"\u0000 CO2 fracturing technique is a kind of ideal waterless stimulation tech. It has the advantages of water free, low reservoir damage, and production increase by improving the reservoir pressure. At the same time, combined with reasonable shut-in control after fracturing, it can be realized integrated development technology of energy storage -fracturing and oil displacement with CO2 waterless stimulation. For low-grade and low-permeability tight reservoirs, through the integration technology of CO2 fracturing and CO2 flooding, fracture-type \"artificial permeability\" is formed in the formation, and micro-nano pore throat of underground matrix is formed as oil and gas production system, which realizes the development of artificial energy, reduces carbon emissions, effectively improves the productivity of low-permeability and tight reservoirs, thus further improves oil recovery. The technology mainly includes two aspects: vertical wells adopt CO2 fracturing + huff and puff displacement integration technology, horizontal wells adopt water-based fracturing + CO2 displacement technology, and utilize the high efficiency of CO2 penetration in reservoirs and crude oil viscosity reduction, which can greatly improve oil recovery, while achieving large-scale CO2 storage and reducing carbon emissions. It is both realistic and economic, and has great social benefits.\u0000 The integrated development technology of energy storage -fracturing and oil displacement with CO2 waterless stimulation has been applied for 10 wells in oilfield, which has achieved good results in increasing reservoir volume, increasing formation energy, reducing oil viscosity and enhancing post-pressure recovery. As a result, the production of them has increased by over 100%. With low viscosity and high diffusion coefficient, supercritical CO2 is good for improving fracturing volume. Effective CO2 fracturing technology can improve stimulated reservoir volume, downhole monitoring results show that the cracks formed by CO2 fracturing is 3 times the size of those formed by water-based fracturing.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73055043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Real-Time Wellbore Stability and Hole Quality Evaluation Using LWD Azimuthal Photoelectric Measurements 利用随钻方位光电测量技术实时评价井眼稳定性和井眼质量
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204825-ms
Khaqan Khan, M. Altwaijri, A. Taher, M. Fouda, Mohamed Hussein
{"title":"Real-Time Wellbore Stability and Hole Quality Evaluation Using LWD Azimuthal Photoelectric Measurements","authors":"Khaqan Khan, M. Altwaijri, A. Taher, M. Fouda, Mohamed Hussein","doi":"10.2118/204825-ms","DOIUrl":"https://doi.org/10.2118/204825-ms","url":null,"abstract":"\u0000 Horizontal and high-inclination deep wells are routinely drilled to enhance hydrocarbon recovery. To sustain production rates, these wells are generally designed to be drilled in the direction of minimum horizontal stress in strike slip stress regime to facilitate transverse fracture growth during fracturing operations. These wells can also cause wellbore instability challenges due to high stress concentration due to compressional or strike-slip stress regimes. Hence, apart from pre-drill wellbore stability analysis for an optimum mud weight design, it is important to continuously monitor wellbore instability indicators during drilling. With the advancements of logging-while-drilling (LWD) techniques, it is now possible to better assess wellbore stability during drilling and, if required, to take timely decisions and adjust mud weight to help mitigate drilling problems.\u0000 The workflow for safely drilling deep horizontal wells starts with analyzing the subsurface stress regime using data from offset wells. Through a series of steps, data is integrated to develop a geomechanics model to select an optimum drilling-fluid density to maintain wellbore stability while minimizing the risks of differential sticking and mud losses. Due to potential lateral subsurface heterogeneity, continuous monitoring of drilling events and LWD measurements is required, to update and calibrate the pre-well model.\u0000 LWD measurements have long been used primarily for petrophysical analysis and well placement in real time. The use of azimuthal measurements for real-time wellbore stability evaluation applications is a more recent innovation. Shallow formation density readings using azimuthal LWD measurements provide a 360° coverage of wellbore geometry, which can be effectively used to identify magnitude and orientation of borehole breakout at the wellbore wall. Conventional LWD tools also provide auxiliary azimuthal measurements, such as photoelectric (Pe) measurement, derived from the near detector of typical LWD density sensors. The Pe measurement, with a very shallow depth of investigation (DOI), is more sensitive to small changes in borehole shape compared with other measurements from the same sensor, particularly where a high contrast exists between drilling mud and formation Pe values. Having azimuthal measurements of both Pe and formation density while drilling facilitates better control on assess wellbore stability assessment in real time and make decisions on changes in mud density or drilling parameters to keep wellbore stable and avoid drilling problems. Time dependency of borehole breakout can also be evaluated using time-lapse data to enhance analysis and reduce uncertainty.\u0000 Analyzing LWD density and Pe azimuthal data in real time has guided real-time decisions to optimize drilling fluid density while drilling. The fluid density indicated by the initial geo-mechanical analysis has been significantly adjusted, enabling safe drilling of deep horizontal wells by ","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81165714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of a Novel Ecofriendly Okra Powder as Fluid Loss Controller in Water Based Drilling Fluids 新型环保型秋葵粉在水基钻井液降滤失剂中的应用
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204773-ms
Mobeen Murtaza, Zeeshan Tariq, Xianmin Zhou, Dhafer Al Sheri, M. Mahmoud, Shahzad Kamal
{"title":"Application of a Novel Ecofriendly Okra Powder as Fluid Loss Controller in Water Based Drilling Fluids","authors":"Mobeen Murtaza, Zeeshan Tariq, Xianmin Zhou, Dhafer Al Sheri, M. Mahmoud, Shahzad Kamal","doi":"10.2118/204773-ms","DOIUrl":"https://doi.org/10.2118/204773-ms","url":null,"abstract":"\u0000 Saudi Arabian based companies are spending many millions of dollars a year on import of drilling mud additives to meet the drilling industry demand. To cut the imported materials, locally available materials are preferable. Out of many drilling fluid additives, a single locally available additive such as fluid loss can save millions of dollars a year. The cost and locally available raw material justify the development of drilling fluid additives in the Kingdom of Saudi Arabia. In other aspect, local development provides many benefits to the Kingdom including industrial growth, technology ownership and new job opportunities.\u0000 Okra (Hibiscus esculents) is widely used as a thickener and viscosifier in medical and food industries due to its low cost, availability, longer shelf life, and high thermal tolerance. In addition to that, it is environment friendly and available in abundance locally in Kingdom of Saudi Arabia. The composition of Okra powder was diagnosed by X-ray fluorescence (XRF) and Fourier-transform infrared spectroscopy (FTIR). The thermal stability of Okra was tested using thermal gravimetric analysis (TGA). The Okra powder was mixed in various concentrations such as (1, 2 and 3) grams in 350ml of water based drilling fluid (WBDF). The performance of Okra contained drilling fluids was compared with starch-based drilling fluid. The addition of Okra reduced fluid loss in different proportions at different concentrations. For instance, drilling fluid with 3g Okra concentration had 42% lower fluid loss as compared to the base fluid. The cake thickness was reduced upon the addition of Okra. The low fluid loss and thin filter cake make Okra a useful solution as a fluid loss controller in WBDFs. The addition of Okra powder also increased the viscosity and gel strength of the WBDFs. TGA analysis of Okra powder showed that it has strong thermal stability as compared to starch. Overall, the experimental results suggest that Okra mixed drilling fluids can be used as an alternate solution to starch mixed drilling fluids.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83893555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
An Experimental Investigation of the Effect of Changing the Rock's Wettability on the Performance of Carbonated Water Injection CWI 改变岩石润湿性对碳酸注水CWI性能影响的实验研究
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204847-ms
J. Castañeda, Almohannad Alhashboul, A. Farzaneh, M. Sohrabi
{"title":"An Experimental Investigation of the Effect of Changing the Rock's Wettability on the Performance of Carbonated Water Injection CWI","authors":"J. Castañeda, Almohannad Alhashboul, A. Farzaneh, M. Sohrabi","doi":"10.2118/204847-ms","DOIUrl":"https://doi.org/10.2118/204847-ms","url":null,"abstract":"\u0000 CWI is affected by multiple factors, including the wettability of the rock. These experiments seek to determine the results that are obtained when CW is injected in a tertiary mode for systems: (1) wetted by water and (2) mixed wettability; to date, no study has used this approach. The same sandstone core was used in all trials, and each test consisted of saturating the core with live crude, followed by the injection of water as a secondary recovery and then the injection of CW as a tertiary recovery. An additional sensitivity test was conducted that consisted of varying the composition of the dissolved gas in the crude. In general, in a water wet system, the recovery associated with the injection of CW is higher (normalized) compared to a mixed wettability system. This does not mean that the results were negative in the mixed system. On the contrary, the results are positive since on the order of an additional 20% was recovered. However, the pressure differential in a mixed system is higher (14%) compared to water wet system. Although it is common knowledge that wettability of the rock affects the production and pressure results in an experiment, these are the first experiments that have been performed exclusively to determine quantitatively the response to CWI while maintaining the other parameters constant.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81005987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methodology of Effective Lateral Placement for Underbalanced Coiled Tubing Drilling Wells 欠平衡连续油管钻井的有效横向定位方法
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204610-ms
Azly Abdul Aziz, Ferney Moreno Sierra, N. Aldossary
{"title":"Methodology of Effective Lateral Placement for Underbalanced Coiled Tubing Drilling Wells","authors":"Azly Abdul Aziz, Ferney Moreno Sierra, N. Aldossary","doi":"10.2118/204610-ms","DOIUrl":"https://doi.org/10.2118/204610-ms","url":null,"abstract":"\u0000 This paper describes a methodology that has been developed to maximize lateral placement in productive reservoir intervals during underbalanced coiled tubing drilling (UBCTD) operations. UBCTD has emerged as an effective and economically viable development solution for exploiting reserves in mature gas reservoirs. In some cases, it can be a suitable solution to develop reserves in more geologically complex and heterogonous reservoirs over the conventional drilling and stimulation techniques.\u0000 The methodology integrates big surface and subsurface data from multiple sources in multiple formats in real to near real-time that are normally acquired during UBCTD drilling operations. The multiple sources of data include subsurface geology, wellsite biosteering, reservoir influx, well testing and drilling, and can provide important information about the reservoirs encountered. With the aid of data analytics and an advanced visualization tool, the data is translated into in series of engineering plots that enable easier identification of productive intervals and more informed as well as efficient lateral placement decisions. This methodology has proven superior to the conventional instantaneous Productivity Index (PI) approach that is commonly used for UBCTD lateral placement.\u0000 The methodology has been tested with good success in a number of recently drilled UBCTD wells in geologically complex depositional environments across carbonates and clastic reservoirs. Post flowback and pressure transient test analyses have shown significant improvement in the well deliver abilities and effective lateral lengths. Past performance from wells drilled using the PI method will be compared with wells drilled with this method.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89880210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine-Learning for the Prediction of Lost Circulation Events - Time Series Analysis and Model Evaluation 漏失事件预测的机器学习-时间序列分析和模型评估
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204706-ms
A. Magana-Mora, Mohammad Aljubran, J. Ramasamy, M. Albassam, C. Gooneratne, Miguel Gonzalez, Tim Thiel, M. Deffenbaugh
{"title":"Machine-Learning for the Prediction of Lost Circulation Events - Time Series Analysis and Model Evaluation","authors":"A. Magana-Mora, Mohammad Aljubran, J. Ramasamy, M. Albassam, C. Gooneratne, Miguel Gonzalez, Tim Thiel, M. Deffenbaugh","doi":"10.2118/204706-ms","DOIUrl":"https://doi.org/10.2118/204706-ms","url":null,"abstract":"\u0000 Objective/Scope. Lost circulation events (LCEs) are among the top causes for drilling nonproductive time (NPT). The presence of natural fractures and vugular formations causes loss of drilling fluid circulation. Drilling depleted zones with incorrect mud weights can also lead to drilling induced losses. LCEs can also develop into additional drilling hazards, such as stuck pipe incidents, kicks, and blowouts. An LCE is traditionally diagnosed only when there is a reduction in mud volume in mud pits in the case of moderate losses or reduction of mud column in the annulus in total losses. Using machine learning (ML) for predicting the presence of a loss zone and the estimation of fracture parameters ahead is very beneficial as it can immediately alert the drilling crew in order for them to take the required actions to mitigate or cure LCEs.\u0000 Methods, Procedures, Process. Although different computational methods have been proposed for the prediction of LCEs, there is a need to further improve the models and reduce the number of false alarms. Robust and generalizable ML models require a sufficiently large amount of data that captures the different parameters and scenarios representing an LCE. For this, we derived a framework that automatically searches through historical data, locates LCEs, and extracts the surface drilling and rheology parameters surrounding such events.\u0000 Results, Observations, and Conclusions. We derived different ML models utilizing various algorithms and evaluated them using the data-split technique at the level of wells to find the most suitable model for the prediction of an LCE. From the model comparison, random forest classifier achieved the best results and successfully predicted LCEs before they occurred. The developed LCE model is designed to be implemented in the real-time drilling portal as an aid to the drilling engineers and the rig crew to minimize or avoid NPT.\u0000 Novel/Additive Information. The main contribution of this study is the analysis of real-time surface drilling parameters and sensor data to predict an LCE from a statistically representative number of wells. The large-scale analysis of several wells that appropriately describe the different conditions before an LCE is critical for avoiding model undertraining or lack of model generalization. Finally, we formulated the prediction of LCEs as a time-series problem and considered parameter trends to accurately determine the early signs of LCEs.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89144125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Manganese Assisted Waterflooding Processes for Enhanced Oil Recovery in Carbonates 锰辅助水驱法提高碳酸盐油藏采收率
Day 2 Mon, November 29, 2021 Pub Date : 2021-12-15 DOI: 10.2118/204821-ms
A. Alghamdi, S. Salah, M. Otaibi, S. Ayirala, A. Yousef
{"title":"Manganese Assisted Waterflooding Processes for Enhanced Oil Recovery in Carbonates","authors":"A. Alghamdi, S. Salah, M. Otaibi, S. Ayirala, A. Yousef","doi":"10.2118/204821-ms","DOIUrl":"https://doi.org/10.2118/204821-ms","url":null,"abstract":"\u0000 Modifying the wettability of carbonate formations through divalent foreign metal incorporation can become a cost-effective practical method for enhanced oil recovery (EOR) applications. The addition of manganese ions to both high salinity water (HSW) and tailored SmartWater at dilute concentrations is exploited in this study to maximize the interfacial potential and promote water-wet conditions in carbonate reservoirs.\u0000 In this experimental investigation, the impact of manganese ions on zeta-potentials at calcite/brine and crude oil/brine interfaces is first determined by measuring zeta-potentials in calcite suspensions and oil emulsions. Two different water chemistries representative of HSW (~60,000 ppm TDS) and a low salinity tailored SmartWater (~6,000 ppm TDS) were used. The measurements were then extended to carbonate rocks and reservoir cores by performing contact angle and spontaneous imbibition tests at reservoir conditions. The oil-water interfacial tensions are also measured to understand the interactions of manganese ions at the oil/brine interface.\u0000 The zeta potential results showed a positive consistent trend, with the addition of 100-1,000 ppm of Mn+2 ions in the form of MnSO4 to the high salinity water, to impact the wetting transition towards water-wet conditions in carbonates. The addition of Mn+2 ions at a concentration of 100-1,000 ppm to HSW enhanced the electrokinetic interactions to favorably alter surface charges at both oil/brine and calcite/brine interfaces. These findings based on eletrokinetic interactions demonstrated good agreement with contact angle data wherein manganese ions in HSW were able to drastically decrease the contact angles from 156 to 88°. Conversely, insignificant changes in oil-water interfacial tensions were observed due to manganese ions. The manganese assisted spontaneous imbibition oil recoveries were increased by about 10% in HSW. Mn+2 ions showed the ability to increase the negative potentials at both calcite/brine and oil/brine interfaces. The obvious trend of such enhanced electrical potential due to Mn+2 addition at the calcite interface supports the claim that Mn+2 selectively gets incorporated into the calcite crystal to modify its surface chemistry. This is expected to increase the surface charges of same polarity at the two opposing interfaces and promote the electrostatic repulsion to inherently change the surface preference towards water-wet conditions.\u0000 This work for the first time identified the favorable impact of incorporating Mn+2 ions under optimized conditions to enhance the wetting transition in carbonate reservoirs. Such new knowledge gained from this experimental study highlights the practical significance of Mn+2 ions as cheap and sustainable wettability modifiers for EOR applications in carbonate reservoirs.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80914617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信