锰辅助水驱法提高碳酸盐油藏采收率

A. Alghamdi, S. Salah, M. Otaibi, S. Ayirala, A. Yousef
{"title":"锰辅助水驱法提高碳酸盐油藏采收率","authors":"A. Alghamdi, S. Salah, M. Otaibi, S. Ayirala, A. Yousef","doi":"10.2118/204821-ms","DOIUrl":null,"url":null,"abstract":"\n Modifying the wettability of carbonate formations through divalent foreign metal incorporation can become a cost-effective practical method for enhanced oil recovery (EOR) applications. The addition of manganese ions to both high salinity water (HSW) and tailored SmartWater at dilute concentrations is exploited in this study to maximize the interfacial potential and promote water-wet conditions in carbonate reservoirs.\n In this experimental investigation, the impact of manganese ions on zeta-potentials at calcite/brine and crude oil/brine interfaces is first determined by measuring zeta-potentials in calcite suspensions and oil emulsions. Two different water chemistries representative of HSW (~60,000 ppm TDS) and a low salinity tailored SmartWater (~6,000 ppm TDS) were used. The measurements were then extended to carbonate rocks and reservoir cores by performing contact angle and spontaneous imbibition tests at reservoir conditions. The oil-water interfacial tensions are also measured to understand the interactions of manganese ions at the oil/brine interface.\n The zeta potential results showed a positive consistent trend, with the addition of 100-1,000 ppm of Mn+2 ions in the form of MnSO4 to the high salinity water, to impact the wetting transition towards water-wet conditions in carbonates. The addition of Mn+2 ions at a concentration of 100-1,000 ppm to HSW enhanced the electrokinetic interactions to favorably alter surface charges at both oil/brine and calcite/brine interfaces. These findings based on eletrokinetic interactions demonstrated good agreement with contact angle data wherein manganese ions in HSW were able to drastically decrease the contact angles from 156 to 88°. Conversely, insignificant changes in oil-water interfacial tensions were observed due to manganese ions. The manganese assisted spontaneous imbibition oil recoveries were increased by about 10% in HSW. Mn+2 ions showed the ability to increase the negative potentials at both calcite/brine and oil/brine interfaces. The obvious trend of such enhanced electrical potential due to Mn+2 addition at the calcite interface supports the claim that Mn+2 selectively gets incorporated into the calcite crystal to modify its surface chemistry. This is expected to increase the surface charges of same polarity at the two opposing interfaces and promote the electrostatic repulsion to inherently change the surface preference towards water-wet conditions.\n This work for the first time identified the favorable impact of incorporating Mn+2 ions under optimized conditions to enhance the wetting transition in carbonate reservoirs. Such new knowledge gained from this experimental study highlights the practical significance of Mn+2 ions as cheap and sustainable wettability modifiers for EOR applications in carbonate reservoirs.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manganese Assisted Waterflooding Processes for Enhanced Oil Recovery in Carbonates\",\"authors\":\"A. Alghamdi, S. Salah, M. Otaibi, S. Ayirala, A. Yousef\",\"doi\":\"10.2118/204821-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Modifying the wettability of carbonate formations through divalent foreign metal incorporation can become a cost-effective practical method for enhanced oil recovery (EOR) applications. The addition of manganese ions to both high salinity water (HSW) and tailored SmartWater at dilute concentrations is exploited in this study to maximize the interfacial potential and promote water-wet conditions in carbonate reservoirs.\\n In this experimental investigation, the impact of manganese ions on zeta-potentials at calcite/brine and crude oil/brine interfaces is first determined by measuring zeta-potentials in calcite suspensions and oil emulsions. Two different water chemistries representative of HSW (~60,000 ppm TDS) and a low salinity tailored SmartWater (~6,000 ppm TDS) were used. The measurements were then extended to carbonate rocks and reservoir cores by performing contact angle and spontaneous imbibition tests at reservoir conditions. The oil-water interfacial tensions are also measured to understand the interactions of manganese ions at the oil/brine interface.\\n The zeta potential results showed a positive consistent trend, with the addition of 100-1,000 ppm of Mn+2 ions in the form of MnSO4 to the high salinity water, to impact the wetting transition towards water-wet conditions in carbonates. The addition of Mn+2 ions at a concentration of 100-1,000 ppm to HSW enhanced the electrokinetic interactions to favorably alter surface charges at both oil/brine and calcite/brine interfaces. These findings based on eletrokinetic interactions demonstrated good agreement with contact angle data wherein manganese ions in HSW were able to drastically decrease the contact angles from 156 to 88°. Conversely, insignificant changes in oil-water interfacial tensions were observed due to manganese ions. The manganese assisted spontaneous imbibition oil recoveries were increased by about 10% in HSW. Mn+2 ions showed the ability to increase the negative potentials at both calcite/brine and oil/brine interfaces. The obvious trend of such enhanced electrical potential due to Mn+2 addition at the calcite interface supports the claim that Mn+2 selectively gets incorporated into the calcite crystal to modify its surface chemistry. This is expected to increase the surface charges of same polarity at the two opposing interfaces and promote the electrostatic repulsion to inherently change the surface preference towards water-wet conditions.\\n This work for the first time identified the favorable impact of incorporating Mn+2 ions under optimized conditions to enhance the wetting transition in carbonate reservoirs. Such new knowledge gained from this experimental study highlights the practical significance of Mn+2 ions as cheap and sustainable wettability modifiers for EOR applications in carbonate reservoirs.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204821-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204821-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过加入二价外来金属来改善碳酸盐地层的润湿性,可以成为提高石油采收率(EOR)的一种经济实用的方法。在本研究中,研究人员将锰离子添加到高盐度水(HSW)和定制的稀浓度SmartWater中,以最大化界面潜力并促进碳酸盐岩储层的水湿条件。在本实验研究中,首先通过测量方解石悬浮液和油乳剂中的ζ电位来确定锰离子对方解石/盐水和原油/盐水界面上ζ电位的影响。使用了两种不同的水化学成分,分别是HSW (~ 60000 ppm TDS)和低盐度定制的SmartWater (~ 6000 ppm TDS)。然后,通过在储层条件下进行接触角和自吸测试,将测量扩展到碳酸盐岩和储层岩心。还测量了油水界面张力,以了解锰离子在油/盐水界面的相互作用。zeta电位结果显示,在高盐度水中添加100-1,000 ppm Mn+2离子(以MnSO4的形式)会影响碳酸盐中向水-湿条件的润湿过渡。在HSW中加入浓度为100- 1000ppm的Mn+2离子增强了电动力学相互作用,有利于改变油/盐水和方解石/盐水界面的表面电荷。这些基于电动力学相互作用的发现证明了与接触角数据的良好一致性,其中锰离子在HSW中能够将接触角从156°急剧降低到88°。相反,锰离子对油水界面张力的影响较小。在HSW中,锰辅助自发渗吸油的采收率提高了约10%。Mn+2离子在方解石/卤水界面和油/卤水界面均表现出增加负电位的能力。由于在方解石界面添加Mn+2而导致的这种明显的电势增强趋势支持了Mn+2选择性地掺入方解石晶体以改变其表面化学性质的说法。预计这将增加两个相反界面上相同极性的表面电荷,并促进静电斥力,从而固有地改变表面对水-湿条件的偏好。本研究首次发现了在优化条件下加入Mn+2离子对碳酸盐储层润湿转变的有利影响。从实验研究中获得的这些新知识凸显了Mn+2离子作为廉价、可持续的润湿性改进剂在碳酸盐岩储层提高采收率中的实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manganese Assisted Waterflooding Processes for Enhanced Oil Recovery in Carbonates
Modifying the wettability of carbonate formations through divalent foreign metal incorporation can become a cost-effective practical method for enhanced oil recovery (EOR) applications. The addition of manganese ions to both high salinity water (HSW) and tailored SmartWater at dilute concentrations is exploited in this study to maximize the interfacial potential and promote water-wet conditions in carbonate reservoirs. In this experimental investigation, the impact of manganese ions on zeta-potentials at calcite/brine and crude oil/brine interfaces is first determined by measuring zeta-potentials in calcite suspensions and oil emulsions. Two different water chemistries representative of HSW (~60,000 ppm TDS) and a low salinity tailored SmartWater (~6,000 ppm TDS) were used. The measurements were then extended to carbonate rocks and reservoir cores by performing contact angle and spontaneous imbibition tests at reservoir conditions. The oil-water interfacial tensions are also measured to understand the interactions of manganese ions at the oil/brine interface. The zeta potential results showed a positive consistent trend, with the addition of 100-1,000 ppm of Mn+2 ions in the form of MnSO4 to the high salinity water, to impact the wetting transition towards water-wet conditions in carbonates. The addition of Mn+2 ions at a concentration of 100-1,000 ppm to HSW enhanced the electrokinetic interactions to favorably alter surface charges at both oil/brine and calcite/brine interfaces. These findings based on eletrokinetic interactions demonstrated good agreement with contact angle data wherein manganese ions in HSW were able to drastically decrease the contact angles from 156 to 88°. Conversely, insignificant changes in oil-water interfacial tensions were observed due to manganese ions. The manganese assisted spontaneous imbibition oil recoveries were increased by about 10% in HSW. Mn+2 ions showed the ability to increase the negative potentials at both calcite/brine and oil/brine interfaces. The obvious trend of such enhanced electrical potential due to Mn+2 addition at the calcite interface supports the claim that Mn+2 selectively gets incorporated into the calcite crystal to modify its surface chemistry. This is expected to increase the surface charges of same polarity at the two opposing interfaces and promote the electrostatic repulsion to inherently change the surface preference towards water-wet conditions. This work for the first time identified the favorable impact of incorporating Mn+2 ions under optimized conditions to enhance the wetting transition in carbonate reservoirs. Such new knowledge gained from this experimental study highlights the practical significance of Mn+2 ions as cheap and sustainable wettability modifiers for EOR applications in carbonate reservoirs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信