{"title":"小井完井无套管esp","authors":"Jinjiang Xiao, C. Ejim","doi":"10.2118/204750-ms","DOIUrl":null,"url":null,"abstract":"\n This paper describes a new electrical submersible pump (ESP) design concept to overcome the challenges of applications in slim well completions or thru-tubing deployment. The housing of the conventional pump is removed, allowing the pump impellers to have a larger diameter. The impact of this design change on pump hydraulic performance is assessed in this paper.\n Downhole ESPs operate in environments where space is limited radially. This is especially the case for slim completions or for thru-tubing rigless deployment. To provide the required rate and total dynamic head, the current approach is to use permanent magnetic motors and operate the slim systems at rotational speed over the conventional speed of 3500-4000 RPM. High-speed operations require new pump stage designs to minimize erosion and vibration. This paper provides an alternative pump design, which removes the pump housing with the benefit of increasing the impeller tip diameter, and hence potentially reducing pump length and operational speed. To ensure the pump retains the well fluids, the diffusers are designed to be externally threaded with an O-ring feature. The centrifugal pump affinity laws are applied to evaluate the impact of removing the pump housing and increasing the impeller outside diameter.\n A typical ESP housing wall thickness is about 0.18-0.25 inch. With the housing removed, the incremental space available for the impeller tip to occupy is increased by 0.36-0.5 inch. Analysis shows that, for the same pump speed as a conventional pump with a housing, a housingless pump will increase the head generated by 23-32%, and the rate capacity about 36-51%, depending on the pump series. In general, the smaller the pump outer diameter, the greater the flow and head capacity increase. This is because the available space due to removing the housing becomes a considerable size of the impeller tip diameter for the smaller series pumps.\n The elimination of pump housing enables impellers with a larger diameter to be used to generate more head per stage. In comparison to a conventional pump of the same outside diameter, and providing the same amount of total dynamic head, the housingless pump can have fewer stages and a shorter length or operate at a reduced speed. The reduced length can help mitigating pump-bending stress for installation in deviated or horizontal wells. The reduction in required operating speeds will reduce pump wears, heat generation and vibration. The housingless ESPs have applications for slim well completions or thru-tubing deployments.","PeriodicalId":11094,"journal":{"name":"Day 2 Mon, November 29, 2021","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Housingless ESPs for Slim Completion Wells\",\"authors\":\"Jinjiang Xiao, C. Ejim\",\"doi\":\"10.2118/204750-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper describes a new electrical submersible pump (ESP) design concept to overcome the challenges of applications in slim well completions or thru-tubing deployment. The housing of the conventional pump is removed, allowing the pump impellers to have a larger diameter. The impact of this design change on pump hydraulic performance is assessed in this paper.\\n Downhole ESPs operate in environments where space is limited radially. This is especially the case for slim completions or for thru-tubing rigless deployment. To provide the required rate and total dynamic head, the current approach is to use permanent magnetic motors and operate the slim systems at rotational speed over the conventional speed of 3500-4000 RPM. High-speed operations require new pump stage designs to minimize erosion and vibration. This paper provides an alternative pump design, which removes the pump housing with the benefit of increasing the impeller tip diameter, and hence potentially reducing pump length and operational speed. To ensure the pump retains the well fluids, the diffusers are designed to be externally threaded with an O-ring feature. The centrifugal pump affinity laws are applied to evaluate the impact of removing the pump housing and increasing the impeller outside diameter.\\n A typical ESP housing wall thickness is about 0.18-0.25 inch. With the housing removed, the incremental space available for the impeller tip to occupy is increased by 0.36-0.5 inch. Analysis shows that, for the same pump speed as a conventional pump with a housing, a housingless pump will increase the head generated by 23-32%, and the rate capacity about 36-51%, depending on the pump series. In general, the smaller the pump outer diameter, the greater the flow and head capacity increase. This is because the available space due to removing the housing becomes a considerable size of the impeller tip diameter for the smaller series pumps.\\n The elimination of pump housing enables impellers with a larger diameter to be used to generate more head per stage. In comparison to a conventional pump of the same outside diameter, and providing the same amount of total dynamic head, the housingless pump can have fewer stages and a shorter length or operate at a reduced speed. The reduced length can help mitigating pump-bending stress for installation in deviated or horizontal wells. The reduction in required operating speeds will reduce pump wears, heat generation and vibration. The housingless ESPs have applications for slim well completions or thru-tubing deployments.\",\"PeriodicalId\":11094,\"journal\":{\"name\":\"Day 2 Mon, November 29, 2021\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Mon, November 29, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204750-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Mon, November 29, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204750-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes a new electrical submersible pump (ESP) design concept to overcome the challenges of applications in slim well completions or thru-tubing deployment. The housing of the conventional pump is removed, allowing the pump impellers to have a larger diameter. The impact of this design change on pump hydraulic performance is assessed in this paper.
Downhole ESPs operate in environments where space is limited radially. This is especially the case for slim completions or for thru-tubing rigless deployment. To provide the required rate and total dynamic head, the current approach is to use permanent magnetic motors and operate the slim systems at rotational speed over the conventional speed of 3500-4000 RPM. High-speed operations require new pump stage designs to minimize erosion and vibration. This paper provides an alternative pump design, which removes the pump housing with the benefit of increasing the impeller tip diameter, and hence potentially reducing pump length and operational speed. To ensure the pump retains the well fluids, the diffusers are designed to be externally threaded with an O-ring feature. The centrifugal pump affinity laws are applied to evaluate the impact of removing the pump housing and increasing the impeller outside diameter.
A typical ESP housing wall thickness is about 0.18-0.25 inch. With the housing removed, the incremental space available for the impeller tip to occupy is increased by 0.36-0.5 inch. Analysis shows that, for the same pump speed as a conventional pump with a housing, a housingless pump will increase the head generated by 23-32%, and the rate capacity about 36-51%, depending on the pump series. In general, the smaller the pump outer diameter, the greater the flow and head capacity increase. This is because the available space due to removing the housing becomes a considerable size of the impeller tip diameter for the smaller series pumps.
The elimination of pump housing enables impellers with a larger diameter to be used to generate more head per stage. In comparison to a conventional pump of the same outside diameter, and providing the same amount of total dynamic head, the housingless pump can have fewer stages and a shorter length or operate at a reduced speed. The reduced length can help mitigating pump-bending stress for installation in deviated or horizontal wells. The reduction in required operating speeds will reduce pump wears, heat generation and vibration. The housingless ESPs have applications for slim well completions or thru-tubing deployments.