Current topics in membranes最新文献

筛选
英文 中文
The expanding toolbox to study the LRRC8-formed volume-regulated anion channel VRAC. 扩展工具箱研究lrrc8形成的体积调节阴离子通道VRAC。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-11-09 DOI: 10.1016/bs.ctm.2021.10.001
Yulia Kolobkova, Sumaira Pervaiz, Tobias Stauber
{"title":"The expanding toolbox to study the LRRC8-formed volume-regulated anion channel VRAC.","authors":"Yulia Kolobkova,&nbsp;Sumaira Pervaiz,&nbsp;Tobias Stauber","doi":"10.1016/bs.ctm.2021.10.001","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.10.001","url":null,"abstract":"<p><p>The volume-regulated anion channel (VRAC) is activated upon cell swelling and facilitates the passive movement of anions across the plasma membrane in cells. VRAC function underlies many critical homeostatic processes in vertebrate cells. Among them are the regulation of cell volume and membrane potential, glutamate release and apoptosis. VRAC is also permeable for organic osmolytes and metabolites including some anti-cancer drugs and antibiotics. Therefore, a fundamental understanding of VRAC's structure-function relationships, its physiological roles, its utility for therapy of diseases, and the development of compounds modulating its activity are important research frontiers. Here, we describe approaches that have been applied to study VRAC since it was first described more than 30 years ago, providing an overview of the recent methodological progress. The diverse applications reflecting a compromise between the physiological situation, biochemical definition, and biophysical resolution range from the study of VRAC activity using a classic electrophysiology approach, to the measurement of osmolytes transport by various means and the investigation of its activation using a novel biophysical approach based on fluorescence resonance energy transfer.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"119-163"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39690558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Mass spectrometry-based lipid analysis and imaging. 基于质谱的脂质分析和成像。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-11-09 DOI: 10.1016/bs.ctm.2021.10.005
Koralege C Pathmasiri, Thu T A Nguyen, Nigina Khamidova, Stephanie M Cologna
{"title":"Mass spectrometry-based lipid analysis and imaging.","authors":"Koralege C Pathmasiri,&nbsp;Thu T A Nguyen,&nbsp;Nigina Khamidova,&nbsp;Stephanie M Cologna","doi":"10.1016/bs.ctm.2021.10.005","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.10.005","url":null,"abstract":"<p><p>Mass spectrometry imaging (MSI) is a powerful tool for in situ mapping of analytes across a sample. With growing interest in lipid biochemistry, the ability to perform such mapping without antibodies has opened many opportunities for MSI and lipid analysis. Herein, we discuss the basics of MSI with particular emphasis on MALDI mass spectrometry and lipid analysis. A discussion of critical advancements as well as protocol details are provided to the reader. In addition, strategies for improving the detection of lipids, as well as applications in biomedical research, are presented.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"315-357"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering. 用时间分辨的小角中子散射解译膜间和膜内的脂质转移。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-11-11 DOI: 10.1016/bs.ctm.2021.10.004
Ursula Perez-Salas, Sumit Garg, Yuri Gerelli, Lionel Porcar
{"title":"Deciphering lipid transfer between and within membranes with time-resolved small-angle neutron scattering.","authors":"Ursula Perez-Salas,&nbsp;Sumit Garg,&nbsp;Yuri Gerelli,&nbsp;Lionel Porcar","doi":"10.1016/bs.ctm.2021.10.004","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.10.004","url":null,"abstract":"<p><p>This review focuses on time-resolved neutron scattering, particularly time-resolved small angle neutron scattering (TR-SANS), as a powerful in situ noninvasive technique to investigate intra- and intermembrane transport and distribution of lipids and sterols in lipid membranes. In contrast to using molecular analogues with potentially large chemical tags that can significantly alter transport properties, small angle neutron scattering relies on the relative amounts of the two most abundant isotope forms of hydrogen: protium and deuterium to detect complex membrane architectures and transport processes unambiguously. This review discusses advances in our understanding of the mechanisms that sustain lipid asymmetry in membranes-a key feature of the plasma membrane of cells-as well as the transport of lipids between membranes, which is an essential metabolic process.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"359-412"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Mechanotransduction in fibrosis: Mechanisms and treatment targets. 纤维化的机械转导:机制和治疗靶点。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-10-05 DOI: 10.1016/bs.ctm.2021.07.004
Chih-Fan Yeh, Caroline Chou, Kai-Chien Yang
{"title":"Mechanotransduction in fibrosis: Mechanisms and treatment targets.","authors":"Chih-Fan Yeh,&nbsp;Caroline Chou,&nbsp;Kai-Chien Yang","doi":"10.1016/bs.ctm.2021.07.004","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.07.004","url":null,"abstract":"<p><p>To perceive and integrate the environmental cues, cells and tissues sense and interpret various physical forces like shear, tensile, and compression stress. Mechanotransduction involves the sensing and translation of mechanical forces into biochemical and mechanical signals to guide cell fate and achieve tissue homeostasis. Disruption of this mechanical homeostasis by tissue injury elicits multiple cellular responses leading to pathological matrix deposition and tissue stiffening, and consequent evolution toward pro-inflammatory/pro-fibrotic phenotypes, leading to tissue/organ fibrosis. This review focuses on the molecular mechanisms linking mechanotransduction to fibrosis and uncovers the potential therapeutic targets to halt or resolve fibrosis.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"279-314"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses. 心血管机械敏感离子通道——将物理力转化为生理反应。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-10-07 DOI: 10.1016/bs.ctm.2021.07.001
Ibra S Fancher
{"title":"Cardiovascular mechanosensitive ion channels-Translating physical forces into physiological responses.","authors":"Ibra S Fancher","doi":"10.1016/bs.ctm.2021.07.001","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.07.001","url":null,"abstract":"<p><p>Cells and tissues are constantly exposed to mechanical stress. In order to respond to alterations in mechanical stimuli, specific cellular machinery must be in place to rapidly convert physical force into chemical signaling to achieve the desired physiological responses. Mechanosensitive ion channels respond to such physical stimuli in the order of microseconds and are therefore essential components to mechanotransduction. Our understanding of how these ion channels contribute to cellular and physiological responses to mechanical force has vastly expanded in the last few decades due to engineering ingenuities accompanying patch clamp electrophysiology, as well as sophisticated molecular and genetic approaches. Such investigations have unveiled major implications for mechanosensitive ion channels in cardiovascular health and disease. Therefore, in this chapter I focus on our present understanding of how biophysical activation of various mechanosensitive ion channels promotes distinct cell signaling events with tissue-specific physiological responses in the cardiovascular system. Specifically, I discuss the roles of mechanosensitive ion channels in mediating (i) endothelial and smooth muscle cell control of vascular tone, (ii) mechano-electric feedback and cell signaling pathways in cardiomyocytes and cardiac fibroblasts, and (iii) the baroreflex.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"47-95"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39560072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
New Methods and Sensors for Membrane and Cell Volume Research 膜和细胞体积研究的新方法和传感器
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 DOI: 10.1016/s1063-5823(21)x0003-8
{"title":"New Methods and Sensors for Membrane and Cell Volume Research","authors":"","doi":"10.1016/s1063-5823(21)x0003-8","DOIUrl":"https://doi.org/10.1016/s1063-5823(21)x0003-8","url":null,"abstract":"","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"56450554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids. 利用Laurdan成像评价膜结构:氧化脂质破坏脂质包装。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-11-18 DOI: 10.1016/bs.ctm.2021.10.003
Irena Levitan
{"title":"Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids.","authors":"Irena Levitan","doi":"10.1016/bs.ctm.2021.10.003","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.10.003","url":null,"abstract":"<p><p>Impact of different lipids on membrane structure/lipid order is critical for multiple biological processes. Laurdan microscopy provides a unique tool to assess this property in heterogeneous biological membranes. This review describes the general principles of the approach and its application in model membranes and cells. It also provides an in-depth discussion of the insights obtained using Laurdan microscopy to evaluate the differential effects of cholesterol, oxysterols and oxidized phospholipids on lipid packing of ordered and disordered domains in vascular endothelial cells.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"235-256"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8929669/pdf/nihms-1780850.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39690564","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fluorescence sensors for imaging membrane lipid domains and cholesterol. 荧光传感器成像膜脂结构域和胆固醇。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-10-20 DOI: 10.1016/bs.ctm.2021.09.004
Francisco J Barrantes
{"title":"Fluorescence sensors for imaging membrane lipid domains and cholesterol.","authors":"Francisco J Barrantes","doi":"10.1016/bs.ctm.2021.09.004","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.09.004","url":null,"abstract":"<p><p>Lipid membrane domains are supramolecular lateral heterogeneities of biological membranes. Of nanoscopic dimensions, they constitute specialized hubs used by the cell as transient signaling platforms for a great variety of biologically important mechanisms. Their property to form and dissolve in the bulk lipid bilayer endow them with the ability to engage in highly dynamic processes, and temporarily recruit subpopulations of membrane proteins in reduced nanometric compartments that can coalesce to form larger mesoscale assemblies. Cholesterol is an essential component of these lipid domains; its unique molecular structure is suitable for interacting intricately with crevices and cavities of transmembrane protein surfaces through its rough β face while \"talking\" to fatty acid acyl chains of glycerophospholipids and sphingolipids via its smooth α face. Progress in the field of membrane domains has been closely associated with innovative improvements in fluorescence microscopy and new fluorescence sensors. These advances enabled the exploration of the biophysical properties of lipids and their supramolecular platforms. Here I review the rationale behind the use of biosensors over the last few decades and their contributions towards elucidation of the in-plane and transbilayer topography of cholesterol-enriched lipid domains and their molecular constituents. The challenges introduced by super-resolution optical microscopy are discussed, as well as possible scenarios for future developments in the field, including virtual (\"no staining\") staining.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"257-314"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. 用FRET研究出芽酵母细胞分裂和高渗胁迫过程中的分子拥挤。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-11-16 DOI: 10.1016/bs.ctm.2021.09.001
Sarah Lecinski, Jack W Shepherd, Lewis Frame, Imogen Hayton, Chris MacDonald, Mark C Leake
{"title":"Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET.","authors":"Sarah Lecinski, Jack W Shepherd, Lewis Frame, Imogen Hayton, Chris MacDonald, Mark C Leake","doi":"10.1016/bs.ctm.2021.09.001","DOIUrl":"10.1016/bs.ctm.2021.09.001","url":null,"abstract":"<p><p>Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"75-118"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612257/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39943093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Membrane tension. 膜张力。
4区 生物学
Current topics in membranes Pub Date : 2021-01-01 Epub Date: 2021-11-02 DOI: 10.1016/bs.ctm.2021.09.002
Pei-Chuan Chao, Frederick Sachs
{"title":"Membrane tension.","authors":"Pei-Chuan Chao,&nbsp;Frederick Sachs","doi":"10.1016/bs.ctm.2021.09.002","DOIUrl":"https://doi.org/10.1016/bs.ctm.2021.09.002","url":null,"abstract":"<p><p>The cell membrane serves as a barrier that restricts the rate of exchange of diffusible molecules. Tension in the membrane regulates many crucial cell functions involving shape changes and motility, cell signaling, endocytosis, and mechanosensation. Tension reflects the forces contributed by the lipid bilayer, the cytoskeleton, and the extracellular matrix. With a fluid-like bilayer model, membrane tension is presumed uniform and hence propagated instantaneously. In this review, we discuss techniques to measure the mean membrane tension and how to resolve the stresses in different components and consider the role of bilayer heterogeneity.</p>","PeriodicalId":11029,"journal":{"name":"Current topics in membranes","volume":" ","pages":"189-203"},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39690562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信