Current medicinal chemistry最新文献

筛选
英文 中文
Advanced Targeted Therapy for Colorectal Cancer with Lipid Nanoparticles. 脂质纳米颗粒用于结直肠癌的先进靶向治疗。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-16 DOI: 10.2174/0109298673327576241201145252
Pawan Kedar, Sankha Bhattacharya, Preeti Sakore, Bhupendra G Prajapati
{"title":"Advanced Targeted Therapy for Colorectal Cancer with Lipid Nanoparticles.","authors":"Pawan Kedar, Sankha Bhattacharya, Preeti Sakore, Bhupendra G Prajapati","doi":"10.2174/0109298673327576241201145252","DOIUrl":"https://doi.org/10.2174/0109298673327576241201145252","url":null,"abstract":"<p><p>Targeted therapy for colorectal cancer (CRC) appears to have great potential with lipid nanoparticles (LNPs). The advances in LNP-based techniques, such as liposomes, exosomes, micelles, solid lipid nanoparticles (SLNs), nano-cubosomes, and plant- derived LNPs (PDLNPs), are explored in detail in this thorough review. Every platform provides distinct advantages: liposomes enable precise drug release and improved delivery; exosomes function as organic nanocarriers for focused treatment; SLNs offer greater stability; micelles enhance drug solubility and resistance; nano-cubosomes tackle low bioavailability; and PDLNPs offer biocompatible substitutes. The mechanisms, benefits, drawbacks, and therapeutic potential of these LNP platforms in the treatment of colorectal cancer are highlighted in the review. The review highlights how crucial it is to use these technologies for efficient CRC management and looks at potential future developments for them. The controlled release properties of liposomes and solid liposome nanoparticles (SLNs) improve the stability and bioavailability of medicinal compounds. On the other hand, exosomes and micelles provide answers for medication resistance and solubility issues, respectively. Novel strategies for resolving bioavailability problems and enhancing biocompatibility include nano-cubosomes and PDLNPs. These LNP-based systems are promising in clinical applications for boosting therapeutic efficacy, decreasing systemic toxicity, and facilitating tailored drug delivery. By incorporating these nanotechnologies into CRC treatment plans, present therapeutic approaches may be completely changed, and more individualized and efficient treatment choices may be provided. To completely comprehend the advantages and drawbacks of these LNP systems in therapeutic settings, as well as to and optimize them, more study is recommended by the review. Treatment for colorectal cancer may be much improved in the future thanks to developments in LNP-based drug delivery systems. These technologies hold great promise for improving patient outcomes and advancing the field of oncology by tackling important issues related to medication delivery and bioavailability.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001768","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resveratrol Anti-inflammatory Effect against Palmitate-induced Cytotoxicity in Raw 264.7 Macrophages. 白藜芦醇抗棕榈酸盐诱导的巨噬细胞毒性作用。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-16 DOI: 10.2174/0109298673352457241210083325
Ekramy M Elmorsy, Ayat B Al-Ghafari, Huda A Al Doghaither
{"title":"Resveratrol Anti-inflammatory Effect against Palmitate-induced Cytotoxicity in Raw 264.7 Macrophages.","authors":"Ekramy M Elmorsy, Ayat B Al-Ghafari, Huda A Al Doghaither","doi":"10.2174/0109298673352457241210083325","DOIUrl":"https://doi.org/10.2174/0109298673352457241210083325","url":null,"abstract":"<p><strong>Background: </strong>Resveratrol (RES) is a phytochemical bioactive compound with suggested therapeutic benefits.</p><p><strong>Objective: </strong>The current work aimed to evaluate the anti-inflammatory effect of RES against palmitate (PA) induced lipotoxicity in raw 264.7 macrophages cell line.</p><p><strong>Methods: </strong>The cells viability was assessed by lactate dehydrogenase assay. Then the effects of RES and PA on nitric oxide (NO), triglyceride (TG) content, and cytokines release were studied. The effect of RES and PA on the treated cells bioenergetics and redox status was evaluated via different assays Results: The results showed that at doses of 10 and 20μM, RES dramatically increased the vitality of PA-exposed macrophages with dramatic significant decrease in the release the proinflammatory cytokines TNF-α, MHGB-1, IL-1β, and IL-6 and their coding genes expression with marked improvement in the cells phagocytic capacity. In addition, RES dramatically lowered the levels of NO and TG in PA-stimulated macrophages. In addition, PA markedly decreased mitochondrial complexes I and III activities with decreased mitochondrial membrane potential and lowered ATP production with induction of oxidative stress. RES was shown to mitigate the effect of PA on macrophages bioenergetics and the oxidative damage and counteracted PA effect on genes linked to oxidative damage, such as Nrf2, Ho-1, NF-κB p65, SOD1, and SOD2.</p><p><strong>Conclusion: </strong>RES could reduce PA-induced lipotoxicity in macrophages via enhancing their viability and counteracting the excess release of cytokines through alleviating PAinduced bioenergetic disruption and oxidative damage with a suggested positive impact of RES on obesity related illnesses caused by triggered cellular inflammation.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hesperidin Improves Wound Healing and Mineralization of Periodontal Ligament Cells in Elevated Glucose Conditions. 橙皮苷在葡萄糖升高的情况下促进伤口愈合和牙周韧带细胞矿化。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-15 DOI: 10.2174/0109298673339671241129074005
Smriti Aryal A C, Md Sofiqul Islam, Aghila Rani Kg, Mohannad Nassar, Mohammed Mustahsen Rahman
{"title":"Hesperidin Improves Wound Healing and Mineralization of Periodontal Ligament Cells in Elevated Glucose Conditions.","authors":"Smriti Aryal A C, Md Sofiqul Islam, Aghila Rani Kg, Mohannad Nassar, Mohammed Mustahsen Rahman","doi":"10.2174/0109298673339671241129074005","DOIUrl":"https://doi.org/10.2174/0109298673339671241129074005","url":null,"abstract":"<p><strong>Introduction: </strong>Elevated glucose can have a detrimental effect on the function and healing process of periodontal cells in inflammatory conditions. Hesperidin (HPN), a bioflavonoid found abundantly in citrus fruits, has numerous biological benefits, including regenerative and anti-inflammatory properties. The current in-vitro study aimed to assess the impact of HPN on the proliferation, wound healing, and functionality of periodontal cells in optimal and elevated glucose conditions.</p><p><strong>Methods: </strong>Human periodontal ligament cells (HPDLCs) were cultured in optimal glucose (1g/L) (OG) and high glucose (4.5 g/L) (HG) conditions. XTT, wound healing, ALP, and calcium release assays were conducted with or without HPN in the culture media.</p><p><strong>Results: </strong>The statistical analysis revealed that adding different concentrations of HPN (2, 4, 10, or 100 μM) had no significant effect on the viability of HPDLCs under both OG (p=0.436) and HG conditions (p=0.162) compared to the control. However, in the HG condition, the addition of 100 μM HPN resulted in a statistically significant increase in wound closure (p=0.003). Furthermore, in the HG condition, the addition of 100 μM HPN significantly increased ALP activity in the OS- media (p=0.001) and significantly increased calcium release within the OS+ media (p=0.016).</p><p><strong>Conclusion: </strong>The findings of this study suggest that HPN provides beneficial effects, facilitating repair and mineralization in HPDLCs under HG conditions.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ginsenoside Rg3 in Cancer Research: Current Trends and Future Prospects - A Review. 人参皂苷Rg3在癌症研究中的现状及展望
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-14 DOI: 10.2174/0109298673333781240924024342
Auwal Ibrahim Tanko, Salman Hosawi, Ehssan Moglad, Muhammad Afzal, Nehmat Ghaboura, Sami I Alzareaa, Ahmed Osman, Muhammad Shahid Nadeem, Imran Kazmi
{"title":"Ginsenoside Rg3 in Cancer Research: Current Trends and Future Prospects - A Review.","authors":"Auwal Ibrahim Tanko, Salman Hosawi, Ehssan Moglad, Muhammad Afzal, Nehmat Ghaboura, Sami I Alzareaa, Ahmed Osman, Muhammad Shahid Nadeem, Imran Kazmi","doi":"10.2174/0109298673333781240924024342","DOIUrl":"https://doi.org/10.2174/0109298673333781240924024342","url":null,"abstract":"<p><p>Cancer is one of the most devastating illnesses in the world, impacting millions of individuals every year. Despite various therapies, the final effect is unsatisfactory. Chemotherapy currently dominates as the primary option of treatment. However, its severe adverse effects, limited efficacy, and resistance to drugs undermine its potential. Growing evidence suggests that ginsenoside Rg3, a natural compound obtained from the ginseng plant (Panax ginseng), holds significant promise in cancer therapy. Its proposed mechanisms primarily involve the enhancement of immunity, retardation of cancer cellular proliferation and metastasis, triggering apoptosis, angiogenesis, epigenetic modification, and Regulation of transition of epithelial mesenchyma (EMT) and miRNAs/lncRNA. Furthermore, Rg3-ginsenoside potentiates the effectiveness of conventional treatments of cancer and reduces the adverse effects through synergistic interactions. Ginsenoside Rg3's present status in cancer research is thoroughly reviewed in this article, shedding light on its intricate mechanisms and potential to revolutionize cancer therapy through combinatorial and nano-based targeted therapy.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial DNA Mutations as a Factor in the Heritability of Atherosclerosis and Other Diseases. 线粒体DNA突变是动脉粥样硬化和其他疾病遗传的一个因素。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-14 DOI: 10.2174/0109298673291199241129044139
Alexander N Orekhov, Nikolay A Orekhov, Vasily N Sukhorukov, Victoria A Khotina, Tatiana I Kovianova, Igor A Sobenin
{"title":"Mitochondrial DNA Mutations as a Factor in the Heritability of Atherosclerosis and Other Diseases.","authors":"Alexander N Orekhov, Nikolay A Orekhov, Vasily N Sukhorukov, Victoria A Khotina, Tatiana I Kovianova, Igor A Sobenin","doi":"10.2174/0109298673291199241129044139","DOIUrl":"https://doi.org/10.2174/0109298673291199241129044139","url":null,"abstract":"<p><p>This review discusses the possibility of inheritance of some diseases through mutations in mitochondrial DNA. These are examples of many mitochondrial diseases that can be caused by mutations in mitochondrial DNA. Symptoms and severity can vary widely depending on the specific mutation and affected tissues. An association between certain mutations in the mitochondrial genome and cancer was reported. In other studies of 2-4 generations in each family, we found that mitochondrial mutations associated with atherosclerosis are inherited. This may at least partially explain the inheritance of predisposition to atherosclerotic disease by maternal line. Furthermore, to prove the important role of mitochondrial mutations in the development of atherosclerotic manifestations at the cellular level, we developed a technique for editing the mitochondrial genome. A recent article described how one of the pro-atherogenic mutations, namely m.15059G>A, was eliminated from such monocyte-derived cells using the technique we developed. Elimination of this mutation resulted in the restoration to normal levels of initially defective mitophagy and impaired inflammatory response. These data strongly suggest that mitochondrial mutations are closely associated with the development of atherosclerotic lesions. Considering that they are inherited, it can be assumed that, at least partly, the genetic predisposition to atherosclerotic diseases is transmitted from mother to offspring. Thus, despite the small size of mitochondrial DNA, its mutations may play a role in the pathogenesis of diseases. Further study of their role will make it possible to consider mitochondrial mutations as promising diagnostic markers and disorders caused by mutations as pharmacological targets.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Strategies for the Treatment of Lung Cancer: An In-depth Analysis of the Use of Immunotherapy, Precision Medicine, and Artificial Intelligence to Improve Prognoses. 肺癌治疗的新策略:免疫疗法、精准医学和人工智能改善预后的深入分析。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-14 DOI: 10.2174/0109298673347323241119184648
Pawan Kedar, Sankha Bhattacharya, Abhishek Kanugo, Bhupendra G Prajapati
{"title":"Novel Strategies for the Treatment of Lung Cancer: An In-depth Analysis of the Use of Immunotherapy, Precision Medicine, and Artificial Intelligence to Improve Prognoses.","authors":"Pawan Kedar, Sankha Bhattacharya, Abhishek Kanugo, Bhupendra G Prajapati","doi":"10.2174/0109298673347323241119184648","DOIUrl":"https://doi.org/10.2174/0109298673347323241119184648","url":null,"abstract":"&lt;p&gt;&lt;p&gt;Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival. In the fight against cancer, immunotherapy has demonstrated encouraging results, especially in cases of small cell lung cancer [SCLC] and non-small cell lung cancer [NSCLC]. A key component in improving T cell responses against tumours is the use of immune checkpoint inhibitors, which include PD-1/PD-L1 and CTLA-4 blockers. Cancer vaccines and CAR T-cell therapy are two examples of adoptive cell therapies that might be used to boost the immune system's ability to eliminate tumours. In order to improve surgical results and decrease recurrence, neoadjuvant immunotherapy is being investigated for its ability to preoperatively reduce tumours. Precision medicine tailors treatment based on individual genetic profiles and tumour features, boosting therapeutic efficacy and avoiding unwanted effects. For certain types of non-small cell lung cancer [NSCLC], targeted treatments based on mutations in genes including EGFR, ALK, and ROS1 have shown excellent results. When it comes to optimizing treatment regimens, biomarker-driven approaches guarantee that the patients most likely to benefit from particular medicines are selected. Artificial intelligence [AI] is revolutionizing lung cancer care through increased diagnostic accuracy, prognostic assessments, and therapy planning. Machine learning algorithms examine enormous information to detect trends and forecast outcomes, permitting individualized treatment techniques. AI-driven imaging tools enable early diagnosis and monitoring of disease progression, while predictive models assist in evaluating therapy responses and potential toxicity. The convergence of these advanced technologies holds promise for overcoming the constraints of conventional therapy. Combining immunotherapy with targeted treatments and utilizing AI for precision medicine delivers a multimodal approach that tackles the heterogeneous and dynamic nature of lung cancer. The incorporation of these new tactics into clinical practice demands cross-disciplinary collaboration and continuing study to develop and confirm their effectiveness. The synergistic application of immunotherapy, precision medicine, and AI constitutes a paradigm shift in lung cancer management. These discoveries provide a robust basis for individualized and adaptable therapy, potentially altering the prognosis for lung cancer patients. Ongoing research and clinical studies are vital to unlocking the full potential of these technologies, paving the way for enhanced therapeutic outcomes and improved quality of life fo","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Modeling of the Interactions of CoFe2O4-BaTiO3 Magnetoelectric Nanoparticles with Cancer and Healthy Cells. CoFe2O4-BaTiO3磁电纳米粒子与癌症和健康细胞相互作用的理论建模。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-14 DOI: 10.2174/0109298673348662241210111400
Gençay Sevim, Gizem Değer, Gülay Büyükköroğlu
{"title":"Theoretical Modeling of the Interactions of CoFe<sub>2</sub>O<sub>4</sub>-BaTiO<sub>3</sub> Magnetoelectric Nanoparticles with Cancer and Healthy Cells.","authors":"Gençay Sevim, Gizem Değer, Gülay Büyükköroğlu","doi":"10.2174/0109298673348662241210111400","DOIUrl":"https://doi.org/10.2174/0109298673348662241210111400","url":null,"abstract":"<p><strong>Introduction: </strong>The effectiveness of pharmaceutical treatment methods is vital in cancer treatment. In this context, various targeted drug delivery systems are being developed to minimize or eliminate existing deficiencies and harms. This study aimed to model the interaction of MEN-based drug-targeting systems with cancer cells and determine the properties of interacting MENs.</p><p><strong>Methods: </strong>Magnetoelectric Nanostructures (MENs) have both targeting and nano-electroporation effects due to their ferroic properties. Among these structures, the most used nanoparticles as targeting mechanisms are CoFe2O4-BaTiO3 structures. For this purpose, the electrical field produced by MENs was modeled using MATLAB R2023b, and a theoretical data pool of appropriate physical properties was created. Testing and applying other magnetoelectric materials defined in the literature may be costly and time-consuming.</p><p><strong>Results: </strong>The problems with MENs can be eliminated by performing theoretical simulations of each material before proceeding with laboratory tests.</p><p><strong>Conclusion: </strong>By simulating the interaction of CoFe2O4-BaTiO3 MENs with cancer cells, physical properties affecting drug targeting were theoretically identified and a data pool of MENs with these properties was created.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Promising Druggable Target for Translational Therapy of Ovarian Cancer: A Molecular Profiling of Therapeutic Innovations, Extracellular Vesicle Acquired Resistance, and Signaling Pathways. 卵巢癌转化治疗的一个有希望的药物靶点:治疗创新、细胞外囊泡获得性耐药和信号通路的分子分析。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-14 DOI: 10.2174/0109298673331849240930140120
Mohd Mustafa, Kashif Abbas, Waleem Ahmad, Rizwan Ahmad, Sidra Islam, Hamda Khan, Moinuddin, Md Imtaiyaz Hassan, Shazia Parveen, Safia Habib
{"title":"A Promising Druggable Target for Translational Therapy of Ovarian Cancer: A Molecular Profiling of Therapeutic Innovations, Extracellular Vesicle Acquired Resistance, and Signaling Pathways.","authors":"Mohd Mustafa, Kashif Abbas, Waleem Ahmad, Rizwan Ahmad, Sidra Islam, Hamda Khan, Moinuddin, Md Imtaiyaz Hassan, Shazia Parveen, Safia Habib","doi":"10.2174/0109298673331849240930140120","DOIUrl":"https://doi.org/10.2174/0109298673331849240930140120","url":null,"abstract":"<p><p>Ovarian cancer (OC) ranks as the fifth leading cause of cancer-related deaths in the United States, posing a significant threat to female health. Late-stage diagnoses, driven by elusive symptoms often masquerading as gastrointestinal issues, contribute to a concerning 70% of cases being identified in advanced stages. While early-stage OC brags a 90% cure rate, progression involving pelvic organs or extending beyond the peritoneal cavity drastically diminishes it. Overcoming chemoresistance and metastasis requires a deep understanding of the associated progression mechanisms for innovative therapies. Extracellular vesicles (EVs), containing proteins, RNAs, DNAs, and metabolites, have surged in recent years, significantly impacting tumor progression, recurrence, immune evasion, and metastasis associated with the ovarian tumor microenvironment. Recent research unveils organ-specific metastatic patterns in OC, providing insights into tumor cell interactions and signaling crosstalk with stromal cells. The review explores the role of EVs behind OC cell metastasis and chemoresistance. Furthermore, the article delves into the role of EVs in the tumor microenvironment, immune evasion, and as biomarkers in context to OC, offering promising therapeutic strategies to enhance survival rates for OC patients. Lastly, the article focuses on an overview of PI3K/AKT/mTOR, MAPK/ERK, and VEGFR signaling pathways in the pathophysiology of ovarian cancer.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Research Progress of mPGES-1 Inhibitor 2,5-Dimethylcelecoxib in Various Diseases. mPGES-1抑制剂2,5-二甲基塞来昔布在多种疾病中的实验研究进展
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-14 DOI: 10.2174/0109298673327820241004042817
Zhanfei Chen, Rong Chen, Laiping Wang, Zihao Yu, Weitong Chen, Hua Lin, Liumin Yu, Jinqiu Li, Zhonghui Chen, Jianlin Shen, Nanhong Tang
{"title":"Experimental Research Progress of mPGES-1 Inhibitor 2,5-Dimethylcelecoxib in Various Diseases.","authors":"Zhanfei Chen, Rong Chen, Laiping Wang, Zihao Yu, Weitong Chen, Hua Lin, Liumin Yu, Jinqiu Li, Zhonghui Chen, Jianlin Shen, Nanhong Tang","doi":"10.2174/0109298673327820241004042817","DOIUrl":"https://doi.org/10.2174/0109298673327820241004042817","url":null,"abstract":"<p><p>Prostaglandin E2 (PGE2) plays a crucial role in inflammation. Non-steroidal anti-inflammatory medications are commonly utilized to alleviate pain and address inflammation by blocking the production of PGE2 and cyclooxygenase (COX). However, selective inhibition of COX can easily lead to a series of risks for cardiovascular diseases. Hence, it is imperative to discover safer and more efficient targets for reducing inflammation. Research has demonstrated that mPGES-1 serves as the final enzyme that controls the rate of prostaglandin E2 synthesis. Moreover, it is only triggered by inflammation and could serve as a possible treatment target instead of COX in cases of inflammation. 2,5-dimethylcelecoxib (DMC) can effectively inhibit mPGES-1 expression, maintain the overall balance of prostaglandins, reduce the secretion of PGE2, and, most importantly, avoid the side effects of COX inhibitors. DMC has the ability to address illnesses through the stimulation of autophagy and apoptosis, as well as the regulation of the immune microenvironment and intestinal flora. This study provides a comprehensive overview of the advancements in DMC within experimental research and offers suggestions for potential avenues of future investigation.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Model to Predict Potential Therapeutic Targets Employing Generative Adversarial Networks for Analysis of Proteins Involved in Mycobacterium fortuitum Biofilm Formation. 利用生成对抗网络预测潜在治疗靶点的计算模型,用于分析与偶然性分枝杆菌生物膜形成有关的蛋白质。
IF 3.5 4区 医学
Current medicinal chemistry Pub Date : 2025-01-14 DOI: 10.2174/0109298673345515241122024326
Shan Ghai, Rahul Shrivastava, Shruti Jain
{"title":"Computational Model to Predict Potential Therapeutic Targets Employing Generative Adversarial Networks for Analysis of Proteins Involved in Mycobacterium fortuitum Biofilm Formation.","authors":"Shan Ghai, Rahul Shrivastava, Shruti Jain","doi":"10.2174/0109298673345515241122024326","DOIUrl":"https://doi.org/10.2174/0109298673345515241122024326","url":null,"abstract":"<p><p>A planktonic population of bacteria can form a biofilm by adhesion and colonization. Proteins known as \"adhesins\" can bind to certain environmental structures, such as sugars, which will cause the bacteria to attach to the substrate. Quorum sensing is used to establish the population is dense enough to form a biofilm. This paper presents a comprehensive overview of our investigation into these processes, specifically focusing on Mycobacterium fortuitum, an emerging pathogen of increasing clinical relevance. In our study, we detailed the methodology employed for the proteomic analysis of M. fortuitum, as well as our innovative application of Generative Adversarial Networks (GANs). These advanced computational tools allow us to analyze complex data sets and identify patterns that might otherwise remain obscured. With a particular focus on the effectiveness of GAN, the identified proteins and their potential roles in the context of M. fortuitum's pathogenesis were discussed. The insights gained from this study can significantly contribute to our understanding of this emerging pathogen and pave the way for developing targeted interventions, potentially leading to improved diagnostic tools and more effective therapeutic strategies against M. fortuitum infection. The authors can achieve 95.43% accuracy for the generator and 87.89% for the discriminator. The model was validated by considering different Machine learning algorithms, reinforcing that integrating computational techniques with microbiological investigations can significantly enhance our understanding of emerging pathogens. Overall, this study emphasizes the importance of exploring the molecular mechanisms behind biofilm formation and pathogenicity, providing a foundation for future research that could lead to innovative solutions in combating infections caused by M. fortuitum and other similar pathogens.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.5,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143001772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信