{"title":"Spontaneous frequencies of aneuploid and diploid sperm in 10 normal Chinese men: assessed by multicolor fluorescence in situ hybridization.","authors":"Q Shi, R H Martin","doi":"10.1159/000015668","DOIUrl":"https://doi.org/10.1159/000015668","url":null,"abstract":"<p><p>Many studies have been published establishing the background frequencies of disomic and diploid sperm in normal men by fluorescence in situ hybridization (FISH) analysis, with highly significant variance among the reports. Besides interdonor heterogeneity and differences in the experimental protocols used, the question of inherent differences in chromosome malsegregation and meiotic arrest among different geographic and ethnic groups of donors has been raised. In this study, multicolor FISH analysis was carried out on semen samples from 10 nonsmoking, nondrinking Chinese men from the People's Republic of China. The results were compared to FISH data on 10 nonsmoking, nondrinking Canadians under the same experimental conditions, in the same laboratory. A total of 200,497 sperm was scored in the Chinese donors and compared to 202,320 sperm from Canadian donors. Approximately 10,000 sperm per chromosome probe per donor were analyzed. The mean hybridization efficiency was 99.99%. The frequencies of X-bearing and Y-bearing sperm were not significantly different from the expected 50% for each individual and for the combined data from all donors (49.73% vs. 49.46%, P = 0.3946). The mean disomy frequencies (range) were 0.07% (0.02%-0.12%) for chromosome 13, 0.18% (0.09%-0.19%) for chromosome 21, 0.05% (0. 01%-0.09%) for 24,XX, 0.02% (0.01%-0.06%) for 24,YY, and 0.29% (0. 13%-0.49%) for 24,XY. The mean diploidy frequency (range) was 0.38% (0.22%-0.73%) for 13-21 hybridizations and 0.32% (0.07%-0.70%) for XY hybridizations. Highly significant interdonor heterogeneity was found for diploidy (P = 0.0000) and for XY disomy (P = 0.0011), but no age effect was observed in any category of disomic or diploid sperm. The data reported here show no marked differences in disomy and diploidy frequencies between the mainland Chinese and Canadian groups, if donor heterogeneity is taken into account.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015668","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21887673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B Bardoni, S Giglio, A Schenck, M Rocchi, J L Mandel
{"title":"Assignment of NUFIP1 (nuclear FMRP interacting protein 1) gene to chromosome 13q14 and assignment of a pseudogene to chromosome 6q12.","authors":"B Bardoni, S Giglio, A Schenck, M Rocchi, J L Mandel","doi":"10.1159/000015580","DOIUrl":"https://doi.org/10.1159/000015580","url":null,"abstract":"The fragile X mental retardation syndrome results from transcriptional silencing of the X-linked FMR1 gene (Imbert et al., 1998 for review). Two autosomal homologues of the FMR1 gene, FXR1 and FXR2 have been identified (Imbert et al., 1998). The two proteins FXR1P and FXR2P interact with fragile X mental retardation protein (FMRP) (Imbert et al., 1998). Recently, a novel protein interacting with FMRP has been cloned (Bardoni et al., 1999). This protein named NUFIP1 (Nuclear FMRP Interacting Protein1) is a nuclear RNA binding protein, expressed in the neurons of hippocampus, cortex and in Purkinje cells, like FMRP. NUFIP1 does not interact with FXR1P and FXR2P, suggesting a possible role in the definition of fragile X phenotype. In this report we describe the mapping of the human NUFIP1 gene to chromosome 13q14 and a NUFIP1 pseudogene to chromosome 6q12. Materials and methods","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015580","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21735840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular cloning and characterization of a mouse homolog of human TNFSF14, a member of the TNF superfamily.","authors":"K Misawa, T Nosaka, T Kojima, M Hirai, T Kitamura","doi":"10.1159/000015570","DOIUrl":"https://doi.org/10.1159/000015570","url":null,"abstract":"<p><p>A member of the tumor necrosis factor (TNF) superfamily, human TNFSF14 (hTNFSF14)/HVEM-L (herpes virus entry mediator ligand) was isolated as a cellular ligand for HVEM/TR2 and human lymphotoxin beta receptor (LTbetaR). TNFSF14 induces apoptosis and suppresses tumor formation. We have isolated a cDNA clone for a mouse homologue of hTNFSF14 by signal sequence trap (SST) screening which we recently developed. The deduced amino acid sequence of the mouse TNFSF14 (mTNFSF14) cDNA comprised 239 amino acid residues and was 77% identical to the hTNFSF14 protein. In Northern blot analysis, 2.1 kb and 4.2kb mTNFSF14 transcripts were detected in spleen and lung, and in heart, respectively. Fluorescence in situ hybridization analysis localized the mTNFSF14 gene Tnfsf14 to chromosome 17 which is tightly linked with Tnf, Lta, and Ltb.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015570","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21737099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H S Kim, J Y Choi, A R Jung, K L Jang, W H Lee, W C Choi, T J Crow, B H Hyun
{"title":"Assignment of the human RhoHP1 gene (ARHD) to chromosome 11q14.3 by radiation hybrid mapping.","authors":"H S Kim, J Y Choi, A R Jung, K L Jang, W H Lee, W C Choi, T J Crow, B H Hyun","doi":"10.1159/000015562","DOIUrl":"https://doi.org/10.1159/000015562","url":null,"abstract":"The Rho (represents Ras homologous) related protein HP1 (RhoHP1) was isolated from a human placenta cDNA library. RhoHP1 showed 50–54% sequence homology to members of the Rho family (Shimizu et al.,1997). The Rho proteins directly interact with protein kinases, which may serve as downstream effector targets of the activated GTPase (Vincent et al., 1997). The Rho family proteins play a critical role in muscle differentiation by regulating the expression of the myogenin and MEF2 genes (Takano et al., 1998). In this report, a radiation hybrid mapping panel was used to assign the RhoHP1 gene ARHD (ras homolog gene family, member D) to chromosome 11q14.3.","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015562","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21737197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Schmid, I Nanda, M Guttenbach, C Steinlein, M Hoehn, M Schartl, T Haaf, S Weigend, R Fries, J M Buerstedde, K Wimmers, D W Burt, J Smith, S A'Hara, A Law, D K Griffin, N Bumstead, J Kaufman, P A Thomson, T Burke, M A Groenen, R P Crooijmans, A Vignal, V Fillon, M Morisson, F Pitel, M Tixier-Boichard, K Ladjali-Mohammedi, J Hillel, A Mäki-Tanila, H H Cheng, M E Delany, J Burnside, S Mizuno
{"title":"First report on chicken genes and chromosomes 2000.","authors":"M Schmid, I Nanda, M Guttenbach, C Steinlein, M Hoehn, M Schartl, T Haaf, S Weigend, R Fries, J M Buerstedde, K Wimmers, D W Burt, J Smith, S A'Hara, A Law, D K Griffin, N Bumstead, J Kaufman, P A Thomson, T Burke, M A Groenen, R P Crooijmans, A Vignal, V Fillon, M Morisson, F Pitel, M Tixier-Boichard, K Ladjali-Mohammedi, J Hillel, A Mäki-Tanila, H H Cheng, M E Delany, J Burnside, S Mizuno","doi":"10.1159/000056772","DOIUrl":"https://doi.org/10.1159/000056772","url":null,"abstract":"","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000056772","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21946194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T E Whitmore, M F Maurer, S Sexson, F Raymond, D Conklin, T A Deisher
{"title":"Assignment of fibroblast growth factor 18 (FGF18) to human chromosome 5q34 by use of radiation hybrid mapping and fluorescence in situ hybridization.","authors":"T E Whitmore, M F Maurer, S Sexson, F Raymond, D Conklin, T A Deisher","doi":"10.1159/000056775","DOIUrl":"https://doi.org/10.1159/000056775","url":null,"abstract":"FGF18 is a recently discovered member of the fibroblast growth factor family (Deisher et al., 1999). FGF18 has been reported to induce hepatic and intestinal proliferation in vivo (Hu et al., 1998), and to activate neural cell proliferation in vitro (Ohbayashi et al., 1998). Recently, FGF18 was mapped to both human chromosome 14p11 (Hu et al., 1999), and chromosome 5 (Sanger Centre, NCBI GeneMap’99). To help resolve this discrepancy, we carried out radiation hybrid mapping using both the GeneBridge 4 and the Stanford G3 human/hamster radiation hybrid mapping panels and fluorescence in situ hybridization using a human genomic BAC clone containing the FGF18 gene.","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000056775","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21946197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Samiotaki, N A Balatsos, N Courtis, C M Tsiapalis
{"title":"Assignment of the 100-kDa subunit of cleavage and polyadenylation specificity factor (CPSF2) to human chromosome 14q31.3 by radiation hybrid mapping.","authors":"M Samiotaki, N A Balatsos, N Courtis, C M Tsiapalis","doi":"10.1159/000056798","DOIUrl":"https://doi.org/10.1159/000056798","url":null,"abstract":"The generation of a new 3) end is part of the eukaryotic premRNA maturation process, in which a poly(A) tail is added by two coupled reactions: endonucleolytic cleavage at the poly(A) site followed by the polyadenylation of the upstream cleaved product (Wahle and Kuhn, 1997). A multicomponent complex sufficient to complete the 3) processing reactions is comprised of Cleavage and Polyadenylation Specificity Factor (CPSF), CstF (Cleavage stimulation Factor), CF Im (Cleavage Factor I), CF IIm (Cleavage Factor II), PAP (Poly(A) polymerase) and PABP2 (PolyA Binding Protein 2). Most of the proteins involved in this finely orchestrated process have been purified and extensively studied (Wahle and Rüegsegger, 1999). CPSF consists of four subunits of 160, 100, 73 and 30 kDa. The exact function of the 100-kDa CPSF subunit is still unknown, while its presence is essential for the maturation process (Jenny et al., 1994). The full length of the human CPSF 100-kDa subunit cDNA was cloned by Nagase et al. (2000) (GenBank accession number AB037788.1), while its bovine homologue was cloned by Jenny et al. (1994) (GenBank accession number X75931).","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000056798","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21946445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HP1gamma associates with euchromatin and heterochromatin in mammalian nuclei and chromosomes.","authors":"E Minc, J C Courvalin, B Buendia","doi":"10.1159/000056789","DOIUrl":"https://doi.org/10.1159/000056789","url":null,"abstract":"<p><p>Heterochromatin protein 1 (HP1) is a nonhistone chromosomal protein, first identified in Drosophila, that plays a dose-dependent role in gene silencing. Three orthologs, HP1alpha, HP1beta, and HP1gamma, have been characterized in mammals. While HP1alpha and HP1beta have been unambiguously localized in heterochromatin by immunocytochemical methods, HP1gamma has been found either exclusively associated with euchromatin or present in both euchromatin and heterochromatin. Here, using an antibody directed against a peptide epitope at the carboxyl-terminal end of the molecule, we localize HP1gamma in both euchromatin and heterochromatin compartments of interphase nuclei, as well as in the pericentromeric chromatin and arms of mitotic chromosomes of 3T3 cells. This dual location was also observed in nuclei expressing HP1gamma as a fusion protein with green fluorescent protein. In contrast, when the distribution of HP1gamma was analyzed with antibodies directed against an amino-terminal epitope, the protein was detectable in euchromatin and not in heterochromatin, except for transient heterochromatin staining during the late S phase, when the heterochromatin undergoes replication. These data suggest that the controversial immunolocalization of HP1gamma in chromatin is due to the use of antibodies directed against topologically distinct epitopes, those present at the amino-terminal end of the molecule being selectively masked in nonreplicative heterochromatin.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000056789","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21947039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clustering of two fragile sites and seven homeobox genes in human chromosome region 2q31-->q32.1.","authors":"M Z Limongi, F Pelliccia, L Gaddini, A Rocchi","doi":"10.1159/000015651","DOIUrl":"https://doi.org/10.1159/000015651","url":null,"abstract":"<p><p>In this study we have used FISH to examine the relationship between a group of homeobox genes, namely DLX1/DLX2, EVX2 and four HOXD genes (10, 11, 12, 13), that map to region q31 on chromosome 2, and the FRA2G and FRA2H fragile sites located at 2q31 and 2q32.1 respectively. Our results indicate that these homeobox genes lie between the two fragile regions.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015651","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21886957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T E Whitmore, J L Holloway, C E Lofton-Day, M F Maurer, L Chen, T J Quinton, J B Vincent, S W Scherer, S Lok
{"title":"Human secretin (SCT): gene structure, chromosome location, and distribution of mRNA.","authors":"T E Whitmore, J L Holloway, C E Lofton-Day, M F Maurer, L Chen, T J Quinton, J B Vincent, S W Scherer, S Lok","doi":"10.1159/000015658","DOIUrl":"https://doi.org/10.1159/000015658","url":null,"abstract":"<p><p>Secretin is an endocrine hormone that stimulates the secretion of bicarbonate-rich pancreatic fluids. Recently, it has been discussed that secretin deficiency may be implicated in autistic syndrome, suggesting that the hormone could have a neuroendocrine function in addition to its role in digestion. In the present study, the human secretin gene (SCT) was isolated from a bacterial artificial chromosome genomic library. SCT contains four exons, with the protein coding regions spanning 713 bp of genomic DNA. Human SCT is similar structurally to the secretin genes of other species. Amino acid conservation, however, is most pronounced within the exon encoding the biologically active mature peptide. Northern blot analysis shows that human SCT transcripts are located in the spleen, intestinal tract, and brain. Radiation hybrid mapping places the SCT locus on chromosome 11p15.5.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015658","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"21889082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}