F Vitelli, I Meloni, S Fineschi, F Favara, C Tiziana Storlazzi, M Rocchi, A Renieri
{"title":"Identification and characterization of mouse orthologs of the AMMECR1 and FACL4 genes deleted in AMME syndrome: orthology of Xq22.3 and MmuXF1-F3.","authors":"F Vitelli, I Meloni, S Fineschi, F Favara, C Tiziana Storlazzi, M Rocchi, A Renieri","doi":"10.1159/000015533","DOIUrl":null,"url":null,"abstract":"<p><p>The contiguous gene deletion syndrome AMME is characterized by Alport syndrome, midface hypoplasia, mental retardation and elliptocytosis and is caused by a deletion in Xq22.3, comprising several genes including COL4A5, FACL4 and AMMECR1. We have now cloned the murine Facl4 and Ammecr1 genes and have mapped both novel murine genes to mouse chromosome X band F1-F3. The murine and human orthologs show 96.5% (FACL4) and 95.2% (AMMECR1) identity at the amino acid level, with conservation of the respective putative subcellular localization signals. Our results show that Facl4 and Ammecr1 are the true murine orthologs of the human genes. Furthermore, the mapping of Facl4 and Ammecr1 to MmuXF1-F3 suggests that this subinterval is orthologous, at least for a portion of Xq22. 3.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000015533","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetics and cell genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000015533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The contiguous gene deletion syndrome AMME is characterized by Alport syndrome, midface hypoplasia, mental retardation and elliptocytosis and is caused by a deletion in Xq22.3, comprising several genes including COL4A5, FACL4 and AMMECR1. We have now cloned the murine Facl4 and Ammecr1 genes and have mapped both novel murine genes to mouse chromosome X band F1-F3. The murine and human orthologs show 96.5% (FACL4) and 95.2% (AMMECR1) identity at the amino acid level, with conservation of the respective putative subcellular localization signals. Our results show that Facl4 and Ammecr1 are the true murine orthologs of the human genes. Furthermore, the mapping of Facl4 and Ammecr1 to MmuXF1-F3 suggests that this subinterval is orthologous, at least for a portion of Xq22. 3.