Current GeneticsPub Date : 2022-12-01DOI: 10.1007/s00294-022-01248-w
Katherine M Hutchinson, Jeremy C Hunn, Daniel Reines
{"title":"Nab3 nuclear granule accumulation is driven by respiratory capacity.","authors":"Katherine M Hutchinson, Jeremy C Hunn, Daniel Reines","doi":"10.1007/s00294-022-01248-w","DOIUrl":"https://doi.org/10.1007/s00294-022-01248-w","url":null,"abstract":"<p><p>Numerous biological processes involve proteins capable of transiently assembling into subcellular compartments necessary for cellular functions. One process is the RNA polymerase II transcription cycle which involves initiation, elongation, co-transcriptional modification of nascent RNA, and termination. The essential yeast transcription termination factor Nab3 is required for termination of small non-coding RNAs and accumulates into a compact nuclear granule upon glucose removal. Nab3 nuclear granule accumulation varies in penetrance across yeast strains and a higher Nab3 granule accumulation phenotype is associated with petite strains, suggesting a possible ATP-dependent mechanism for granule disassembly. Here, we demonstrate the uncoupling of mitochondrial oxidative phosphorylation by drug treatment or deletions of nuclear-encoded ATP synthase subunit genes were sufficient to increase Nab3 granule accumulation and led to an inability to proliferate during prolonged glucose deprivation, which requires respiration. Additionally, by enriching for respiration competent cells from a petite-prone strain, we generated a low granule-accumulating strain from a relatively high one, providing another link between respiratory competency and Nab3 granules. Consistent with the resulting idea that ATP is involved in granule accumulation, the addition of extracellular ATP to semi-permeabilized cells was sufficient to reduce Nab3 granule accumulation. Deleting the SKY1 gene, which encodes a kinase that phosphorylates nuclear SR repeat-containing proteins and is involved in efficient stress granule disassembly, also resulted in increased granule accumulation. This observation implicates Sky1 in Nab3 granule biogenesis. Taken together, these findings suggest there is normally an equilibrium between termination factor granule assembly and disassembly mediated by ATP-requiring nuclear machinery.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"68 5-6","pages":"581-591"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887517/pdf/nihms-1857372.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10643763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-12-01Epub Date: 2022-08-05DOI: 10.1007/s00294-022-01247-x
Ashutosh Kumar Singh, Megha Kumari, Nitish Sharma, Amit Kumar Rai, Sudhir P Singh
{"title":"Metagenomic views on taxonomic and functional profiles of the Himalayan Tsomgo cold lake and unveiling its deterzome potential.","authors":"Ashutosh Kumar Singh, Megha Kumari, Nitish Sharma, Amit Kumar Rai, Sudhir P Singh","doi":"10.1007/s00294-022-01247-x","DOIUrl":"https://doi.org/10.1007/s00294-022-01247-x","url":null,"abstract":"<p><p>Cold habitat is considered a potential source for detergent industry enzymes. This study aims at the metagenomic investigation of Tsomgo lake for taxonomic and functional annotation, unveiling the deterzome potential of the residing microbiota at this site. The present investigation revealed molecular profiling of microbial community structure and functional potential of the high-altitude Tsomgo lake samples of two different temperatures, harvested during March and August. Bacteria were found to be the most dominant phyla, with traces of genomic pieces of evidence belonging to archaea, viruses, and eukaryotes. Proteobacteria and Actinobacteria were noted to be the most abundant bacterial phyla in the cold lake. In-depth metagenomic investigation of the cold aquatic habitat revealed novel genes encoding detergent enzymes, amylase, protease, and lipase. Further, metagenome-assembled genomes (MAGs) belonging to the psychrophilic bacterium, Arthrobacter alpinus, were constructed from the metagenomic data. The annotation depicted the presence of detergent enzymes and genes for low-temperature adaptation in Arthrobacter alpinus. Psychrophilic microbial isolates were screened for lipase, protease, and amylase activities to further strengthen the metagenomic findings. A novel strain of Acinetobacter sp. was identified with the dual enzymatic activity of protease and amylase. The bacterial isolates exhibited hydrolyzing activity at low temperatures. This metagenomic study divulged novel genomic resources for detergent industry enzymes, and the bacterial isolates secreting cold-active amylase, lipase, and protease enzymes. The findings manifest that Tsomgo lake is a potential bioresource of cold-active enzymes, vital for various industrial applications.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"565-579"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40582174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-12-01Epub Date: 2022-09-16DOI: 10.1007/s00294-022-01253-z
Yasuhiro Matsuo, Stevan Marcus, Makoto Kawamukai
{"title":"Synergistic roles of the phospholipase B homolog Plb1 and the cAMP-dependent protein kinase Pka1 in the hypertonic stress response of Schizosaccharomyces pombe.","authors":"Yasuhiro Matsuo, Stevan Marcus, Makoto Kawamukai","doi":"10.1007/s00294-022-01253-z","DOIUrl":"https://doi.org/10.1007/s00294-022-01253-z","url":null,"abstract":"<p><p>The phospholipase B homolog Plb1 and the cAMP-dependent protein kinase (PKA) pathway are required by fission yeast, also known as to Schizosaccharomyces pombe, to grow under KCl-stress conditions. Here, we report the relative contributions of Plb1 and the cAMP/PKA pathway during the hypertonic stress response. We show that the plb1∆, cyr1∆, and pka1∆ single mutants are sensitive to high concentrations of KCl but insensitive to sorbitol-induced osmotic stress. In contrast, the plb1∆ cyr1∆ and plb1∆ pka1∆ double mutants are hypersensitive to KCl and sorbitol. The cyr1∆ pka1∆ double mutants showed the same phenotype of each single mutant. Growth inhibition due to hypertonic stress in the plb1∆, plb1∆ cyr1∆, and plb1∆ pka1∆ strains was partially rescued by cgs1 deletion-cgs1∆ has constitutively active Pka1-or by the deletion of transcription factor Rst2, which is negatively regulated by Pka1. Pka1-GFP localized in the nucleus and cytoplasm in plb1∆, whereas it is localized only in the cytoplasm in cyr1∆, indicating that Plb1 does not regulate Pka1 localization. Glucose limitation downregulates the PKA pathway, and it was accordingly observed that glucose limitation in plb1∆ further increased the strain's sensitivity to KCl. Growth inhibition by KCl in plb1∆ under glucose-limited conditions was significantly rescued by cgs1∆ and slightly rescued by rst2∆. These findings indicate that, in fission yeast, Plb1 and the glucose-sensing cAMP/PKA pathway play a synergistic role in responding to hypertonic stress.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"661-674"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40363565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-12-01Epub Date: 2022-09-13DOI: 10.1007/s00294-022-01252-0
Thaís Carolina da Silva Dal'Sasso, Vinícius Delgado da Rocha, Hugo Vianna Silva Rody, Maximiller Dal-Bianco Lamas Costa, Luiz Orlando de Oliveira
{"title":"The necrosis- and ethylene-inducing peptide 1-like protein (NLP) gene family of the plant pathogen Corynespora cassiicola.","authors":"Thaís Carolina da Silva Dal'Sasso, Vinícius Delgado da Rocha, Hugo Vianna Silva Rody, Maximiller Dal-Bianco Lamas Costa, Luiz Orlando de Oliveira","doi":"10.1007/s00294-022-01252-0","DOIUrl":"https://doi.org/10.1007/s00294-022-01252-0","url":null,"abstract":"<p><p>Effectors are secreted by plant-associated microorganisms to modify the host cell physiology. As effectors, the Necrosis- and Ethylene-inducing peptide 1-like proteins (NLPs) are involded in the early phases of plant infection and may trigger host immune responses. Corynespora cassiicola is a polyphagous plant pathogen that causes target spot on many agriculturally important crops. Using genome assembly, gene prediction, and proteome annotation tools, we retrieved 135 NLP-encoding genes from proteomes of 44 isolates. We explored the evolutionary history of NLPs using Bayesian phylogeny, gene genealogies, and selection analyses. We accessed the expression profiles of the NLP genes during the early phase of C. cassiicola-soybean interaction. Three NLP putative-effector genes (Cc_NLP1.1, Cc_NLP1.2A, and Cc_NLP1.2B) were maintained in the genomes of all isolates tested. An NLP putative-non-effector gene (Cc_NLP1.3) was found in three isolates that had been originally obtained from soybean. Putative-effector NLPs were under different selective constraints: Cc_NLP1.1 was under stronger selective pressure, while Cc_NLP1.2A was under a more relaxed constraint. Meanwhile, Cc_NLP1.2B likely evolved under either positive or balancing selection. Despite highly divergent, the putative-effector NLPs maintain conserved the residues necessary to trigger plant immune responses, suggesting they are potentially functional. Only the Cc_NLP1.1 putative-effector gene was significantly expressed at the early hours of soybean colonization, while Cc_NLP1.2A and Cc_NLP1.2B showed much lower levels of gene expression.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"645-659"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33464923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dysfunction of Ras-GAP protein AfgapA contributes to hypoxia fitness in Aspergillus fumigatus.","authors":"Cai Bian, Yoko Kusuya, Daisuke Hagiwara, Sayaka Ban, Yu Lu, Masaki Nagayama, Hiroki Takahashi","doi":"10.1007/s00294-022-01249-9","DOIUrl":"https://doi.org/10.1007/s00294-022-01249-9","url":null,"abstract":"<p><p>The filamentous fungus Aspergillus fumigatus is the most important pathogenic fungus among Aspergillus species associated with aspergillosis. A. fumigatus must adapt to hypoxic microenvironments to survive and thrive in human lungs. To gain further insights into hypoxic adaptation, we generated a laboratory-evolved strain (Afs35-G20) harboring hypoxia fitness, and identified a nonsense mutation in AfgapA encoding a Ras-GAP protein, which could result in the deletion of 22 amino acids at the C-terminus. We investigated the role of AfgapA in hypoxia fitness by constructing Afs35-G20-AfgapA<sup>WT</sup>, and ∆AfgapA. Indeed, the hypoxia fitness of Afs35-G20 was reversed by introducing AfgapA<sup>WT</sup>. ∆AfgapA exhibited greater hypoxia fitness and hypervirulence in the silkworm infection model, indicating that AfgapA is responsible for hypoxia fitness, particularly in liquid cultures. Taken together, the AfgapA dysfunction may lead to the downregulation of its Ras substrate(s), reflecting several phenotypes such as increased hypoxia fitness, hypervirulence, poor conidiation, and conidial pigmentation. Here, we report the function of a Ras-GAP protein AfgapA in A. fumigatus for the first time.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"593-603"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40595140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-12-01Epub Date: 2022-08-16DOI: 10.1007/s00294-022-01250-2
Yoko Kusuya, Cai Bian, Daisuke Hagiwara, Sayaka Ban, Hiroki Takahashi
{"title":"A novel Zn<sub>2</sub>-Cys<sub>6</sub> transcription factor clcA contributes to copper homeostasis in Aspergillus fumigatus.","authors":"Yoko Kusuya, Cai Bian, Daisuke Hagiwara, Sayaka Ban, Hiroki Takahashi","doi":"10.1007/s00294-022-01250-2","DOIUrl":"https://doi.org/10.1007/s00294-022-01250-2","url":null,"abstract":"<p><p>The filamentous fungus Aspergillus fumigatus is the most important pathogenic fungus among Aspergillus species associated with aspergillosis. A. fumigatus is exposed to diverse environmental stresses in the hosts during infection such as an excess of essential metal copper. To gain further insights into copper homeostasis, we generated an A. fumigatus laboratory evolved strain with increased fitness in copper stress, and identified the mutation in a Zn<sub>2</sub>-Cys<sub>6</sub> type transcription factor clcA. We examined the role of clcA using the evolved and ∆clcA strains. The ∆clcA strain exhibited defective growth on minimal medium, PDA and copper-repleted medium, and defective conidiogenesis and conidial pigmentation. We found that clcA was required for the expressions of genes involved in conidiogenesis, conidial pigmentation, and transporters cdr1B and mfsB related to azole resistance. clcA was dispensable for the virulence in silkworm infection model. We report here that clcA plays an important role in hyphal growth, conidiogenesis, and copper adaptation.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"605-617"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40713369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-12-01Epub Date: 2022-07-06DOI: 10.1007/s00294-022-01246-y
Petar Tomev Mitrikeski
{"title":"Insertion orientation within the cassette affects gene-targeting success during ends-out recombination in the yeast Saccharomyces cerevisiae.","authors":"Petar Tomev Mitrikeski","doi":"10.1007/s00294-022-01246-y","DOIUrl":"https://doi.org/10.1007/s00294-022-01246-y","url":null,"abstract":"<p><p>Gene-targeting is one of the most important molecular tools for genomic manipulations for research and industrial purposes. However, many factors influence targeting fidelity undermining the efforts for accurate, fast, and reliable construction of genetically modified yeast strains. Therefore, it is of great academic interest that we uncover as many as possible parameters affecting the recombination mechanisms that enable targeting. Since usually, researchers choose the orientation of the insertion (marker) within the module at random, it seemed interesting to see whether the same module will achieve essentially the same targeting efficiency when the same marker was oriented alternatively concerning the same target gene. Thus, two loci (URA3 and LEU2) and one allele (ura3-52) in a haploid yeast genetic background were targeted by artificial modules bearing homologous insertions in alternative orientations being flanked by long asymmetrical targeting homology to either replace or disrupt a genomic target. Results showed that insertion orientation within the targeting module strongly influences targeting in yeast, regardless of the targeting approach.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"551-564"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40575259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-12-01Epub Date: 2022-10-17DOI: 10.1007/s00294-022-01255-x
Peter M Palenchar, Thomas DeStefanis
{"title":"Transcriptional noise adjusted for expression levels reveals genes with high transcriptional noise that are highly expressed, functionally related, and co-regulated in yeast.","authors":"Peter M Palenchar, Thomas DeStefanis","doi":"10.1007/s00294-022-01255-x","DOIUrl":"https://doi.org/10.1007/s00294-022-01255-x","url":null,"abstract":"<p><p>Understanding the relationship between variability in single-cell and non-single-cell gene expression studies will aid in understanding the role of and mechanisms that lead to variability in biological systems. Studies on the variation of gene expression levels in yeast normally focus on single cells and use the coefficient of variance (CV) as a measure of noise. The CV is typically negatively correlated with gene expression levels, so most of the studies using yeast find that genes with high transcriptional noise are lowly expressed. We find adjusting noise for expression levels using linear/natural log polynomial, and local fits and analyzing many non-single-cell RNA-seq sets identifies genes with high median transcriptional noise that are different than those that have high median CVs. Interestingly, these genes are heavily regulated by transcription factors that are related to variability and stochastic processes based on single-cell studies, including Msn2p, Msn4p, Hsf1p, and Crz1p but are not associated with genes with high median CVs based on non-single-cell gene expression data. In addition, adjusting noise for expression levels in a single-cell RNA-seq data set adds value by finding genes that have noisy gene expression levels and their associated transcription factors that are not found to be associated with genes with high CVs in the single-cell expression data or a comparable non-single-cell gene expression data. Lastly, S. cerevisiae genes with noisy expression tend to have orthologs with noisy gene expression in C. albicans, indicating transcriptional noise is evolutionarily conserved.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"675-686"},"PeriodicalIF":2.5,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33541473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-08-01Epub Date: 2022-03-22DOI: 10.1007/s00294-022-01235-1
Brenda D Wingfield, Mike J Wingfield, Tuan A Duong
{"title":"Molecular basis of cycloheximide resistance in the Ophiostomatales revealed.","authors":"Brenda D Wingfield, Mike J Wingfield, Tuan A Duong","doi":"10.1007/s00294-022-01235-1","DOIUrl":"https://doi.org/10.1007/s00294-022-01235-1","url":null,"abstract":"<p><p>Resistance to the antibiotic Cycloheximide has been reported for a number of fungal taxa. In particular, some yeasts are known to be highly resistant to this antibiotic. Early research showed that this resulted from a transition mutation in one of the 60S ribosomal protein genes. In addition to the yeasts, most genera and species in the Ophiostomatales are highly resistant to this antibiotic, which is widely used to selectively isolate these fungi. Whole-genome sequences are now available for numerous members of the Ophiostomatales providing an opportunity to determine whether the mechanism of resistance in these fungi is the same as that reported for yeast genera such as Kluyveromyces. We examined all the available genomes for the Ophiostomatales and discovered that a transition mutation in the gene coding for ribosomal protein eL42, which results in the substitution of the amino acid Proline to Glutamine, likely confers resistance to this antibiotic. This change across all genera in the Ophiostomatales suggests that the mutation arose early in the evolution of these fungi.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":" ","pages":"505-514"},"PeriodicalIF":2.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40312454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Current GeneticsPub Date : 2022-08-01DOI: 10.1007/s00294-022-01234-2
Jeremy C Hunn, Katherine M Hutchinson, Joshua B Kelley, Daniel Reines
{"title":"Variable penetrance of Nab3 granule accumulation quantified by a new tool for high-throughput single-cell granule analysis.","authors":"Jeremy C Hunn, Katherine M Hutchinson, Joshua B Kelley, Daniel Reines","doi":"10.1007/s00294-022-01234-2","DOIUrl":"https://doi.org/10.1007/s00294-022-01234-2","url":null,"abstract":"<p><p>Reorganization of cellular proteins into subcellular compartments, such as the concentration of RNA-binding proteins into cytoplasmic stress granules and P-bodies, is a well-recognized, widely studied physiological process currently under intense investigation. One example of this is the induction of the yeast Nab3 transcription termination factor to rearrange from its pan-nucleoplasmic distribution to a granule at the nuclear periphery in response to nutrient limitation. Recent work in many cell types has shown that protein condensation in the nucleus is functionally important for transcription initiation, RNA processing, and termination. However, little is known about how subnuclear compartments form. Here, we have quantitatively analyzed this dynamic process in living yeast using a high-throughput computational tool and fluorescence microscopy. This analysis revealed that Nab3 granule accumulation varies in penetrance across yeast strains. A concentrated single granule is formed from at least a quarter of the nuclear Nab3 drawn from the rest of the nucleus. Levels of granule accumulation were inversely correlated with a growth defect in the absence of glucose. Importantly, the basis for some of the variation in penetrance was attributable to a defect in mitochondrial function. This publicly available computational tool provides a rigorous, reproducible, and unbiased examination of Nab3 granule accumulation that should be widely applicable to a variety of fluorescent images. Thousands of live cells can be readily examined enabling rigorous statistical verification of significance. With it, we describe a new feature of inducible subnuclear compartment formation for RNA-binding transcription factors and an important determinant of granule biogenesis.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":"68 3-4","pages":"467-480"},"PeriodicalIF":2.5,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9283369/pdf/nihms-1815149.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9700016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}