Synergistic roles of the phospholipase B homolog Plb1 and the cAMP-dependent protein kinase Pka1 in the hypertonic stress response of Schizosaccharomyces pombe.

IF 1.8 4区 生物学 Q3 GENETICS & HEREDITY
Current Genetics Pub Date : 2022-12-01 Epub Date: 2022-09-16 DOI:10.1007/s00294-022-01253-z
Yasuhiro Matsuo, Stevan Marcus, Makoto Kawamukai
{"title":"Synergistic roles of the phospholipase B homolog Plb1 and the cAMP-dependent protein kinase Pka1 in the hypertonic stress response of Schizosaccharomyces pombe.","authors":"Yasuhiro Matsuo,&nbsp;Stevan Marcus,&nbsp;Makoto Kawamukai","doi":"10.1007/s00294-022-01253-z","DOIUrl":null,"url":null,"abstract":"<p><p>The phospholipase B homolog Plb1 and the cAMP-dependent protein kinase (PKA) pathway are required by fission yeast, also known as to Schizosaccharomyces pombe, to grow under KCl-stress conditions. Here, we report the relative contributions of Plb1 and the cAMP/PKA pathway during the hypertonic stress response. We show that the plb1∆, cyr1∆, and pka1∆ single mutants are sensitive to high concentrations of KCl but insensitive to sorbitol-induced osmotic stress. In contrast, the plb1∆ cyr1∆ and plb1∆ pka1∆ double mutants are hypersensitive to KCl and sorbitol. The cyr1∆ pka1∆ double mutants showed the same phenotype of each single mutant. Growth inhibition due to hypertonic stress in the plb1∆, plb1∆ cyr1∆, and plb1∆ pka1∆ strains was partially rescued by cgs1 deletion-cgs1∆ has constitutively active Pka1-or by the deletion of transcription factor Rst2, which is negatively regulated by Pka1. Pka1-GFP localized in the nucleus and cytoplasm in plb1∆, whereas it is localized only in the cytoplasm in cyr1∆, indicating that Plb1 does not regulate Pka1 localization. Glucose limitation downregulates the PKA pathway, and it was accordingly observed that glucose limitation in plb1∆ further increased the strain's sensitivity to KCl. Growth inhibition by KCl in plb1∆ under glucose-limited conditions was significantly rescued by cgs1∆ and slightly rescued by rst2∆. These findings indicate that, in fission yeast, Plb1 and the glucose-sensing cAMP/PKA pathway play a synergistic role in responding to hypertonic stress.</p>","PeriodicalId":10918,"journal":{"name":"Current Genetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00294-022-01253-z","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 1

Abstract

The phospholipase B homolog Plb1 and the cAMP-dependent protein kinase (PKA) pathway are required by fission yeast, also known as to Schizosaccharomyces pombe, to grow under KCl-stress conditions. Here, we report the relative contributions of Plb1 and the cAMP/PKA pathway during the hypertonic stress response. We show that the plb1∆, cyr1∆, and pka1∆ single mutants are sensitive to high concentrations of KCl but insensitive to sorbitol-induced osmotic stress. In contrast, the plb1∆ cyr1∆ and plb1∆ pka1∆ double mutants are hypersensitive to KCl and sorbitol. The cyr1∆ pka1∆ double mutants showed the same phenotype of each single mutant. Growth inhibition due to hypertonic stress in the plb1∆, plb1∆ cyr1∆, and plb1∆ pka1∆ strains was partially rescued by cgs1 deletion-cgs1∆ has constitutively active Pka1-or by the deletion of transcription factor Rst2, which is negatively regulated by Pka1. Pka1-GFP localized in the nucleus and cytoplasm in plb1∆, whereas it is localized only in the cytoplasm in cyr1∆, indicating that Plb1 does not regulate Pka1 localization. Glucose limitation downregulates the PKA pathway, and it was accordingly observed that glucose limitation in plb1∆ further increased the strain's sensitivity to KCl. Growth inhibition by KCl in plb1∆ under glucose-limited conditions was significantly rescued by cgs1∆ and slightly rescued by rst2∆. These findings indicate that, in fission yeast, Plb1 and the glucose-sensing cAMP/PKA pathway play a synergistic role in responding to hypertonic stress.

Abstract Image

磷脂酶B同源物Plb1和camp依赖性蛋白激酶Pka1在裂糖酵母高高压应激反应中的协同作用。
磷脂酶B同源物Plb1和camp依赖性蛋白激酶(PKA)途径是裂变酵母(也称为裂糖酵母)在高温胁迫条件下生长所必需的。在这里,我们报告了Plb1和cAMP/PKA通路在高渗应激反应中的相对贡献。结果表明,plb1∆、cyr1∆和pka1∆单突变体对高浓度KCl敏感,但对山梨醇诱导的渗透胁迫不敏感。相比之下,plb1∆cyr1∆和plb1∆pka1∆双突变体对KCl和山梨醇敏感。cyr1∆pka1∆双突变体表现出与单突变体相同的表型。plb1∆、plb1∆cyr1∆和plb1∆pka1∆菌株因高高压胁迫而产生的生长抑制通过cgs1缺失(cgs1∆具有组成性pka1活性)或转录因子Rst2缺失(pka1负调控)部分恢复。Pka1- gfp在plb1∆中定位于细胞核和细胞质中,而在cyr1∆中仅定位于细胞质中,说明plb1不调节Pka1的定位。葡萄糖限制下调了PKA途径,因此观察到plb1∆的葡萄糖限制进一步增加了菌株对KCl的敏感性。葡萄糖限制条件下,KCl对plb1∆的生长抑制作用被cgs1∆显著缓解,被rst2∆轻微缓解。这些结果表明,在裂变酵母中,Plb1和葡萄糖感应cAMP/PKA通路在高渗应激反应中发挥协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Genetics
Current Genetics 生物-遗传学
CiteScore
6.00
自引率
0.00%
发文量
34
审稿时长
1 months
期刊介绍: Current Genetics publishes genetic, genomic, molecular and systems-level analysis of eukaryotic and prokaryotic microorganisms and cell organelles. All articles are peer-reviewed. The journal welcomes submissions employing any type of research approach, be it analytical (aiming at a better understanding), applied (aiming at practical applications), synthetic or theoretical. Current Genetics no longer accepts manuscripts describing the genome sequence of mitochondria/chloroplast of a small number of species. Manuscripts covering sequence comparisons and analyses that include a large number of species will still be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信