Coral ReefsPub Date : 2024-06-28DOI: 10.1007/s00338-024-02526-4
Jenny Fong, Blake D. Ramsby, Florita Flores, Tewodros Dada, Elsa Antunes, Muhammad Azmi Abdul Wahab, Andrea Severati, Andrew P. Negri, Guillermo Diaz-Pulido
{"title":"Effects of material type and surface roughness of settlement tiles on macroalgal colonisation and early coral recruitment success","authors":"Jenny Fong, Blake D. Ramsby, Florita Flores, Tewodros Dada, Elsa Antunes, Muhammad Azmi Abdul Wahab, Andrea Severati, Andrew P. Negri, Guillermo Diaz-Pulido","doi":"10.1007/s00338-024-02526-4","DOIUrl":"https://doi.org/10.1007/s00338-024-02526-4","url":null,"abstract":"<p>Sexual propagation of corals is a promising strategy for coral restoration, but one of the main challenges is the high mortality of coral spat due to competitive interactions with macroalgae during the early life history stages. Optimising the properties of settlement substrates such as material types and surface roughness has the potential to improve the survival of spat by limiting the recruitment and growth of macroalgae. In this study, we assessed the effects of modifying surface roughness across three different tile materials (alumina-based ceramic, calcium carbonate (CaCO<sub>3</sub>), and concrete) on the settlement success and post-settlement survivorship of <i>Acropora kenti</i> coral larvae in six mesocosm tanks, each with different established macroalgal communities. The macroalgal community compositions on the tiles were significantly different among material types, but not surface roughness, although the type and abundance of macroalgal species were heavily influenced by the established tank communities. Increasing surface roughness did not affect larval settlement success or spat survivorship. Substantially higher larval settlement density was found on concrete tiles (1.92 ± 0.10 larvae cm<sup>−2</sup>), but spat survival was the highest on CaCO<sub>3</sub> tiles (73.4 ± 4.2% survived). Very strong competitive interactions were observed between spat and macroalgae, with overgrowth by the crustose coralline alga <i>Crustaphytum</i> sp. and the brown alga <i>Lobophora</i> sp. being the primary cause of spat mortality. Overall, when taking into account both settlement and survival rates, concrete was the best performing among the tile types tested here.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"197 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-28DOI: 10.1007/s00338-024-02525-5
Michael T. Connelly, Mary Grace Catapang, Andrea M. Quattrini
{"title":"Unlocking the treasure trove: leveraging dry coral specimens for museum genomics","authors":"Michael T. Connelly, Mary Grace Catapang, Andrea M. Quattrini","doi":"10.1007/s00338-024-02525-5","DOIUrl":"https://doi.org/10.1007/s00338-024-02525-5","url":null,"abstract":"<p>Natural history museums house the largest biodiversity collections in the world and represent an enormous repository of genetic information. Much of this information, however, has remained inaccessible until recently. Emerging technologies, such as techniques for isolation of historical DNA (hDNA) and target enrichment sequencing of ultraconserved elements (UCEs) that can utilize degraded DNA as input material, have the potential to unlock museum collections for genomics research. Here, we demonstrate that hDNA extracted from dried <i>Pocillopora</i> coral specimens, collected up to 90 yrs ago, can be used as input for UCE target enrichment sequencing. The resulting sequence data can be used in phylogenetic studies to resolve questions about taxonomic species identities, biogeographic distributions, and evolutionary histories. Our results provide a blueprint for research groups seeking to take advantage of untapped genetic information stored in natural history museum collections.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-24DOI: 10.1007/s00338-024-02521-9
Noam S. Vogt-Vincent, April J. Burt, Rosa M. van der Ven, Helen L. Johnson
{"title":"Coral reef potential connectivity in the southwest Indian Ocean","authors":"Noam S. Vogt-Vincent, April J. Burt, Rosa M. van der Ven, Helen L. Johnson","doi":"10.1007/s00338-024-02521-9","DOIUrl":"https://doi.org/10.1007/s00338-024-02521-9","url":null,"abstract":"<p>The tropical southwest Indian Ocean is a coral biodiversity hotspot, with remote reefs physically connected by larval dispersal through eddies and a complex set of equatorial and boundary currents. Based on multidecadal, 2 km resolution hydrodynamic and larval dispersal models that incorporate temporal variability in dispersal, we find that powerful zonal currents, current bifurcations, and geographic isolation act as leaky dispersal barriers, partitioning the southwest Indian Ocean into clusters of reefs that tend to consistently retain larvae, and therefore gene flow, over many generations. Whilst exceptionally remote, the Chagos Archipelago can broadcast (and receive) considerable numbers of larvae to (and from) reefs across the wider southwest Indian Ocean, most significantly exchanging larvae with the Inner Islands of Seychelles, but also the Mozambique Channel region. Considering multi-generational dispersal indicates that most coral populations in the southwest Indian Ocean are physically connected within a few hundred steps of dispersal. These results suggest that regional biogeography and population structure can be largely attributed to geologically recent patterns of larval dispersal, although some notable discrepancies indicate that palaeogeography and environmental suitability also play an important role. The model output and connectivity matrices are available in full and will provide useful physical context to regional biogeography and connectivity studies, as well as supporting marine spatial planning efforts.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"28 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-24DOI: 10.1007/s00338-024-02513-9
Kelly Yumi Inagaki, Guilherme Ortigara Longo
{"title":"Revisiting 20 years of coral–algal interactions: global patterns and knowledge gaps","authors":"Kelly Yumi Inagaki, Guilherme Ortigara Longo","doi":"10.1007/s00338-024-02513-9","DOIUrl":"https://doi.org/10.1007/s00338-024-02513-9","url":null,"abstract":"<p>Coral–algal interactions are pivotal in reef ecosystems globally as they can scale up ecosystem levels and lead to dominance shifts. In this study, we conducted a systematic review of global coral–algal interactions, identifying the most studied locations, species, and types of interactions. We then assessed how these interactions may be impacted by consumers and climate change. Over the past 20 years (2001–2020), coral and algae interactions were mostly explored in the Pacific, and the Caribbean and US East Coast, where branching and massive corals were the focus, while other coral growth forms received less attention, and effects on algae were often overlooked. Adult corals were generally reported to be damaged when directly interacting with algae through physical abrasion or allelopathy. Conversely, algae interactions were found to have a positive impact on juvenile corals by facilitating larval recruitment and settlement. As expected, coral–algal interactions and the type of coral–algal relationships vary globally, most likely due to differences in abiotic conditions, community composition and the number of studies performed in a region. Despite the large emphasis on the role of consumers in controlling coral–algal interactions, few studies directly explored the effects of herbivory on coral–algal interactions. Given the growing evidence that ocean warming and acidification can reduce the competitive ability of corals, understanding the dynamic relationships between coral, algae, and consumers under future climate change conditions is crucial in predicting future coral recruitment potential and reef composition patterns. Here, we highlight the main findings from coral–algal interaction studies performed in the last 20 year and point to future directions, such as: 1) diversifying location, coral species, growth forms and life phases; 2) considering effects on both sides of interaction, not neglecting effects on algae; and 3) taking a closer look into the role of consumers and microbiomes. Advancing our understanding of coral–algal interactions, as well as how these interactions shift under changing conditions, is critical in predicting how coral reef ecosystems may operate in the future.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"33 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Intraspecific variation in response to elevated pCO2 and temperature in the branching reef coral Acropora digitifera from different habitats","authors":"Cristiana Manullang, Ariyo Imanuel Tarigan, Akira Iguchi, Takashi Nakamura","doi":"10.1007/s00338-024-02523-7","DOIUrl":"https://doi.org/10.1007/s00338-024-02523-7","url":null,"abstract":"<p>Ocean acidification (OA) and ocean warming (OW) affect the calcification of corals, and intraspecific variations in response to these stressors in the population level need to be clarified for better future predictions. Using <i>Acropora digitifera</i> as our subject, we examined the intraspecific variability in calcification and maximum quantum yield (<i>F</i><sub><i>v</i></sub><i>/F</i><sub><i>m</i></sub>) of photosystem II of symbiotic zooxanthella in responses to OA, OW, and OA + OW. Samples were taken from two different sites: Sesoko Station (warmer) and Sesoko South (cooler) in Okinawa, Japan. Calcification rates varied between the two sites, and noticeable differences were observed only among coral colonies from the Sesoko South site, specifically under control and OA treatments. Furthermore, <i>F</i><sub><i>v</i></sub><i>/F</i><sub><i>m</i></sub> showed no variation between the sites due to those stresses. Hence, the calcification rates among <i>A. digitifera</i> colonies varied by habitat, and we found within-site variation only in the lower temperature location, Sesoko South. We observed diminished variation in response among colonies in the warmer site. The adapting to diverse environmental conditions and responding to changes such as seawater <i>p</i>CO<sub>2</sub> and temperature, may lead to differences in sensitivity between the two populations to OA, OW, and OA + OW. These intraspecific variation could arise from factors like acclimatizations, the influence of specific genotypes, or phenotypic plasticity of the colonies.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"12 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-17DOI: 10.1007/s00338-024-02520-w
Lorna Howlett, Emma F. Camp, Nicolas S. Locatelli, Iliana B. Baums, Paige Strudwick, Sage Rassmussen, David J. Suggett
{"title":"Population and clonal structure of Acropora cf. hyacinthus to inform coral restoration practices on the Great Barrier Reef","authors":"Lorna Howlett, Emma F. Camp, Nicolas S. Locatelli, Iliana B. Baums, Paige Strudwick, Sage Rassmussen, David J. Suggett","doi":"10.1007/s00338-024-02520-w","DOIUrl":"https://doi.org/10.1007/s00338-024-02520-w","url":null,"abstract":"<p>A key goal of coral restoration is to re-establish self-sustaining coral populations and ensure resilience to future stressors, which requires that genetic diversity is maximised. However, coral genetic and genotypic (clonal) diversity is variable across reef sites via success of sexual recruitment, and cryptic species diversity can complicate breeding efforts. Assessing genotypic and genetic diversity of colonies to be used in restoration is therefore critical to avoid founder, inbreeding or outbreeding effects. Considering recent efforts to upscale coral propagation on the Great Barrier Reef (GBR), we examined species, population and clonal structure of a commonly out-planted tabular <i>Acropora</i> species—<i>Acropora hyacinthus</i> (Dana, 1864). A total of 189 colonies were sampled from six reef systems throughout the northern-central GBR and genotyped using an <i>Acropora-</i>specific Affymetrix microarray, which resulted in 1387 variant sites that passed quality control. Cryptic species were readily resolved and all sampled <i>A. hyacinthus</i> colonies represented unique genotypes within sites at three reefs. At reefs that contained multi-ramet genets (clonal genotypes), the mean and maximum between-ramet distances were 0.68 and 1.99 m, respectively. Therefore, sampling colonies > 2 m apart increases the likelihood these colonies represent distinct genets. Such a sampling design therefore maximises genotypic diversity when sourcing colonies for propagation and out-planting. Based on these variant sites, we found no between-reef genetic divergence based on locality. Furthermore, through unintentional sampling of non-target tabular Acroporid species, we show how this genotyping method may be used for resolving taxonomic uncertainty as well as population dynamics.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"73 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141509852","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-05DOI: 10.1007/s00338-024-02508-6
Antonella Lavorato, Marzia Bo, Héctor Reyes-Bonilla, Pedro Medina-Rosas, Carmen Rodríguez-Jaramillo
{"title":"Reproductive cycle of the black coral Antipathes galapagensis in the Bay of La Paz, Gulf of California, Mexico","authors":"Antonella Lavorato, Marzia Bo, Héctor Reyes-Bonilla, Pedro Medina-Rosas, Carmen Rodríguez-Jaramillo","doi":"10.1007/s00338-024-02508-6","DOIUrl":"https://doi.org/10.1007/s00338-024-02508-6","url":null,"abstract":"<p><i>Antipathes galapagensis</i>, Deichmann (Smithson Misc Collect 9:1–18, 1941), has been the object of intensive fishing in the Eastern Tropical Pacific due to its large and arborescent colonies and dense forests. Despite its importance as a habitat-forming species, little information exists about its basic biology. Thus, the objective of this study is to describe its reproductive cycle. Samplings were performed in Espiritu Santo Archipelago (La Paz Bay, Gulf of California, Mexico) over 22 months. Histological analyses were conducted on 197 coral samples collected to assess their reproductive strategy from 2018 to 2019. For the first time, male and female gametogenic development stages are described for the species, determining the mean diameter and size range of oocytes and spermatocysts for each gametogenesis sub-stage. The black coral <i>A. galapagensis</i> is an external spawner, adopting a partial spawning strategy, showing evidence of sequential hermaphroditism, and this latter representing the first documentation for the order Antipatharia. The estimated colony sexual maturity height is 102 and 93 cm for females and males, respectively. Gametogenesis begins in June and reaches the reproductive peak in September–October, where the highest frequency is observed of mature females and males and partial spawning. The reproductive cycle shows a correlation with seawater surface temperature increase in the study area, which reaches its maximum from September–October. The results provide the first knowledge contribution to the species biology, essential for its protection and conservation management.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"26 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-04DOI: 10.1007/s00338-024-02515-7
Ashtyn L. Isaak, Maureen Ho, Max S. Dhillon, Maggie D. Johnson, Hildegard Westphal, Steve S. Doo
{"title":"Macroalgal presence decreases coral calcification rates more than ocean acidification","authors":"Ashtyn L. Isaak, Maureen Ho, Max S. Dhillon, Maggie D. Johnson, Hildegard Westphal, Steve S. Doo","doi":"10.1007/s00338-024-02515-7","DOIUrl":"https://doi.org/10.1007/s00338-024-02515-7","url":null,"abstract":"<p>Global coral reef degradation has precipitated phase shifts toward macroalgal-dominated communities. Despite the negative repercussions for reefscapes, higher abundances of primary producers have the potential to positively impact the physicochemical environment and mitigate negative impacts of ocean acidification (OA). In this study, we investigated the influence of macroalgal (cf. <i>Sargassum vulgare</i>) density on coral (<i>Acropora millepora</i> and <i>A. hemprichii</i>) calcification rates under current and future OA conditions. Corals were resistant to OA up to ~ 1100 µatm, with no changes in calcification rates. However, the presence of (low and high density) algae reduced calcification rates by ~ 41.8%, suggesting either a chemical defense response due to algal metabolites or potential physical impacts from shading or abrasion. Documented beneficial buffering effects of macroalgae in OA may also elicit negative impacts on coral calcification, suggesting further work is needed to elucidate how species interactions influence responses to projected climate change.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"68 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-03DOI: 10.1007/s00338-024-02503-x
Allison M. Lewis, Caleb C. Butler, Kira E. Turnham, Drew F. Wham, Kenneth D. Hoadley, Robin T. Smith, Dustin W. Kemp, Mark E. Warner, Todd C. LaJeunesse
{"title":"The diversity, distribution, and temporal stability of coral ‘zooxanthellae’ on a pacific reef: from the scale of individual colonies to across the host community","authors":"Allison M. Lewis, Caleb C. Butler, Kira E. Turnham, Drew F. Wham, Kenneth D. Hoadley, Robin T. Smith, Dustin W. Kemp, Mark E. Warner, Todd C. LaJeunesse","doi":"10.1007/s00338-024-02503-x","DOIUrl":"https://doi.org/10.1007/s00338-024-02503-x","url":null,"abstract":"<p>The ecological and evolutionary consequences of partner fidelity and flexibility among coral–dinoflagellate mutualisms are widely debated. Resident symbionts can modulate the resilience of their hosts to environmental stressors, which explains, in part, why host–symbiont combinations differ over broad geographic ranges and across physical–environmental gradients in light and temperature. Therefore, flexibility in these mutualisms may influence the longevity of coral populations and communities subjected to ocean warming. However, despite decades of research, basic knowledge about these mutualisms remains incomplete, hindering the development of predictive ecological theory. In particular, few studies have investigated the long-term composition of symbiont populations within individual colonies. To further examine the extent to which coral colonies have stable relationships with specific symbionts over multiple years, diverse coral taxa (Scleractinia) from a West Indo-Pacific fore reef (Palau) were tagged and sampled at various intervals—ranging from six months to several years—over nine years' time. Symbiont identity was examined using multiple genetic markers that resolved symbiont diversity to species and individual genotypes (i.e., clonal strains). Members of the genus <i>Cladocopium</i> (formerly <i>Symbiodinium</i> Clade C) were prevalent across the host community. Generally, corals with open modes of symbiont acquisition harbored a host–generalist symbiont, while corals with vertical symbiont transmission were associated with co-evolved host-specific symbionts. Consistent with previous colony monitoring studies, symbiont populations in a majority of colonies were dominated by one species and one strain (based on multilocus genotyping) over multiple years. Thus, the distribution of symbiont diversity at the genus, species and clone level, comprising specific and stable partner combinations, scale predictably to reef habitat, host taxon, and individual colony. Recognizing these fundamental ecological patterns establishes a more comprehensive understanding of the population and community structure of these mutualisms.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"4 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Coral ReefsPub Date : 2024-06-03DOI: 10.1007/s00338-024-02516-6
M. Monti, A. Giorgi, V. J. Paul, S. P. Gunasekera, L. J. Houk, C. Dugan, T. DeMarco, J. B. Olson
{"title":"Natural products from Caribbean octocorals demonstrate bioactivity against Vibrio coralliilyticus strains","authors":"M. Monti, A. Giorgi, V. J. Paul, S. P. Gunasekera, L. J. Houk, C. Dugan, T. DeMarco, J. B. Olson","doi":"10.1007/s00338-024-02516-6","DOIUrl":"https://doi.org/10.1007/s00338-024-02516-6","url":null,"abstract":"<p>Caribbean coral reefs are currently facing a rapid decline caused by a plethora of threats including disease outbreaks. Octocorals appear to be unaffected by the majority of diseases impacting scleractinian corals, including stony coral tissue loss disease (SCTLD) that emerged in 2014 and resulted in a mass mortality of scleractinian coral populations inhabiting Florida, the USA, and Caribbean reefs. Although the Caribbean Sea is considered a disease hot spot, few investigations into the mechanism(s) responsible for the resistance of octocorals have been conducted. In response, the capacity for octocoral-derived extracts and natural products to inhibit strains of <i>Vibrio coralliilyticus</i>, pathogenic bacteria that can cause bleaching and disease in stony corals and can co-occur in SCTLD infections, was explored. Extracts obtained from each of the four octocoral species studied demonstrated antimicrobial activity against <i>V. coralliilyticus</i>. Bioassay-guided fractionations of crude extracts from <i>Antillogorgia americana</i> were employed to identify the antimicrobial compounds, revealing the presence of secosterols in the most bioactive fractions. These results suggest that octocoral species may utilize chemical defenses to protect themselves against infection by strains of a known coral pathogen and contribute to the body of knowledge regarding the success of octocorals on Caribbean reefs.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":"35 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141258920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}