{"title":"Intraspecific variation in response to elevated pCO2 and temperature in the branching reef coral Acropora digitifera from different habitats","authors":"Cristiana Manullang, Ariyo Imanuel Tarigan, Akira Iguchi, Takashi Nakamura","doi":"10.1007/s00338-024-02523-7","DOIUrl":null,"url":null,"abstract":"<p>Ocean acidification (OA) and ocean warming (OW) affect the calcification of corals, and intraspecific variations in response to these stressors in the population level need to be clarified for better future predictions. Using <i>Acropora digitifera</i> as our subject, we examined the intraspecific variability in calcification and maximum quantum yield (<i>F</i><sub><i>v</i></sub><i>/F</i><sub><i>m</i></sub>) of photosystem II of symbiotic zooxanthella in responses to OA, OW, and OA + OW. Samples were taken from two different sites: Sesoko Station (warmer) and Sesoko South (cooler) in Okinawa, Japan. Calcification rates varied between the two sites, and noticeable differences were observed only among coral colonies from the Sesoko South site, specifically under control and OA treatments. Furthermore, <i>F</i><sub><i>v</i></sub><i>/F</i><sub><i>m</i></sub> showed no variation between the sites due to those stresses. Hence, the calcification rates among <i>A. digitifera</i> colonies varied by habitat, and we found within-site variation only in the lower temperature location, Sesoko South. We observed diminished variation in response among colonies in the warmer site. The adapting to diverse environmental conditions and responding to changes such as seawater <i>p</i>CO<sub>2</sub> and temperature, may lead to differences in sensitivity between the two populations to OA, OW, and OA + OW. These intraspecific variation could arise from factors like acclimatizations, the influence of specific genotypes, or phenotypic plasticity of the colonies.</p>","PeriodicalId":10821,"journal":{"name":"Coral Reefs","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coral Reefs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00338-024-02523-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean acidification (OA) and ocean warming (OW) affect the calcification of corals, and intraspecific variations in response to these stressors in the population level need to be clarified for better future predictions. Using Acropora digitifera as our subject, we examined the intraspecific variability in calcification and maximum quantum yield (Fv/Fm) of photosystem II of symbiotic zooxanthella in responses to OA, OW, and OA + OW. Samples were taken from two different sites: Sesoko Station (warmer) and Sesoko South (cooler) in Okinawa, Japan. Calcification rates varied between the two sites, and noticeable differences were observed only among coral colonies from the Sesoko South site, specifically under control and OA treatments. Furthermore, Fv/Fm showed no variation between the sites due to those stresses. Hence, the calcification rates among A. digitifera colonies varied by habitat, and we found within-site variation only in the lower temperature location, Sesoko South. We observed diminished variation in response among colonies in the warmer site. The adapting to diverse environmental conditions and responding to changes such as seawater pCO2 and temperature, may lead to differences in sensitivity between the two populations to OA, OW, and OA + OW. These intraspecific variation could arise from factors like acclimatizations, the influence of specific genotypes, or phenotypic plasticity of the colonies.
期刊介绍:
Coral Reefs, the Journal of the International Coral Reef Society, presents multidisciplinary literature across the broad fields of reef studies, publishing analytical and theoretical papers on both modern and ancient reefs. These encourage the search for theories about reef structure and dynamics, and the use of experimentation, modeling, quantification and the applied sciences.
Coverage includes such subject areas as population dynamics; community ecology of reef organisms; energy and nutrient flows; biogeochemical cycles; physiology of calcification; reef responses to natural and anthropogenic influences; stress markers in reef organisms; behavioural ecology; sedimentology; diagenesis; reef structure and morphology; evolutionary ecology of the reef biota; palaeoceanography of coral reefs and coral islands; reef management and its underlying disciplines; molecular biology and genetics of coral; aetiology of disease in reef-related organisms; reef responses to global change, and more.