Current drug metabolism最新文献

筛选
英文 中文
Drug-Protein Interactions Prediction Models Using Feature Selection and Classification Techniques 使用特征选择和分类技术的药物-蛋白质相互作用预测模型
IF 2.3 4区 医学
Current drug metabolism Pub Date : 2024-01-05 DOI: 10.2174/0113892002268739231211063718
T. Idhaya, A. Suruliandi, S. P. Raja
{"title":"Drug-Protein Interactions Prediction Models Using Feature Selection and Classification Techniques","authors":"T. Idhaya, A. Suruliandi, S. P. Raja","doi":"10.2174/0113892002268739231211063718","DOIUrl":"https://doi.org/10.2174/0113892002268739231211063718","url":null,"abstract":"Background: Drug-Protein Interaction (DPI) identification is crucial in drug discovery. The high dimensionality of drug and protein features poses challenges for accurate interaction prediction, necessitating the use of computational techniques. Docking-based methods rely on 3D structures, while ligand-based methods have limitations such as reliance on known ligands and neglecting protein structure. Therefore, the preferred approach is the chemogenomics-based approach using machine learning, which considers both drug and protein characteristics for DPI prediction. Methods: In machine learning, feature selection plays a vital role in improving model performance, reducing overfitting, enhancing interpretability, and making the learning process more efficient. It helps extract meaningful patterns from drug and protein data while eliminating irrelevant or redundant information, resulting in more effective machine-learning models. On the other hand, classification is of great importance as it enables pattern recognition, decision-making, predictive modeling, anomaly detection, data exploration, and automation. It empowers machines to make accurate predictions and facilitates efficient decision-making in DPI prediction. For this research work, protein data was sourced from the KEGG database, while drug data was obtained from the DrugBank data machine-learning base. Results: To address the issue of imbalanced Drug Protein Pairs (DPP), different balancing techniques like Random Over Sampling (ROS), Synthetic Minority Over-sampling Technique (SMOTE), and Adaptive SMOTE were employed. Given the large number of features associated with drugs and proteins, feature selection becomes necessary. Various feature selection methods were evaluated: Correlation, Information Gain (IG), Chi-Square (CS), and Relief. Multiple classification methods, including Support Vector Machines (SVM), Random Forest (RF), Adaboost, and Logistic Regression (LR), were used to predict DPI. Finally, this research identifies the best balancing, feature selection, and classification methods for accurate DPI prediction. Conclusion: This comprehensive approach aims to overcome the limitations of existing methods and provide more reliable and efficient predictions in drug-protein interaction studies.","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altitude effect on Propofol Pharmacokinetics in Rats. 海拔高度对大鼠丙泊酚药代动力学的影响
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002285571240220131547
Lijun Li, Xuejun Wang, Sheng Wang, Li Wen, Haopeng Zhang
{"title":"Altitude effect on Propofol Pharmacokinetics in Rats.","authors":"Lijun Li, Xuejun Wang, Sheng Wang, Li Wen, Haopeng Zhang","doi":"10.2174/0113892002285571240220131547","DOIUrl":"10.2174/0113892002285571240220131547","url":null,"abstract":"<p><strong>Background: </strong>Propofol is an intravenous agent for clinical anesthesia. As the influence of the hypobaric-hypoxic environment (Qinghai-Tibetan region, altitude: 2800-4300 m, PaO2: 15.1-12.4 kPa) on the metabolism of Propofol is complex, the research results on the metabolic characteristics of Propofol in high-altitude areas remain unclear. This study aimed to investigate the pharmacokinetic characteristics of Propofol in a high-altitude hypoxic environment using animal experiments.</p><p><strong>Methods: </strong>Rats were randomly divided into three groups: high-altitude, medium-altitude, and plain groups. The time of disappearance and recovery of the rat righting reflex was recorded as the time of anesthesia induction and awakening, respectively. The plasma concentration of Propofol was determined by gas chromatography-mass spectrometry. A pharmacokinetic analysis software was used to analyze the blood-drug concentrations and obtain the pharmacokinetic parameters.</p><p><strong>Results: </strong>We observed that when Propofol anesthetizes rats, the anesthesia induction time was shortened, and\u0000the recovery time was prolonged with increased altitude. Compared with the plain group, the clearance of\u0000Propofol decreased, whereas the half-life, area under the concentration-time curve, peak plasma concentration,\u0000and average residence time extension increased.</p><p><strong>Conclusion: </strong>The pharmacokinetic characteristics of Propofol are significantly altered in high-altitude hypoxic environments.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327735/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of High Altitude Environment on Pharmacokinetic and Pharmacodynamic of Warfarin in Rats. 高海拔环境对大鼠华法林药代动力学和药效学的影响
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002277930240201101256
Xiaojing Zhang, Hongfang Mu, Yan Zhong, Rong Wang, Wenbin Li
{"title":"Effect of High Altitude Environment on Pharmacokinetic and Pharmacodynamic of Warfarin in Rats.","authors":"Xiaojing Zhang, Hongfang Mu, Yan Zhong, Rong Wang, Wenbin Li","doi":"10.2174/0113892002277930240201101256","DOIUrl":"10.2174/0113892002277930240201101256","url":null,"abstract":"<p><strong>Background: </strong>High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear.</p><p><strong>Objective: </strong>The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats.</p><p><strong>Method: </strong>Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT.</p><p><strong>Results: </strong>Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (C<sub>max</sub>) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values.</p><p><strong>Conclusion: </strong>High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Combination of Magnoflorine and Spinosin Improves the Antidepressant effects on CUMS Mouse Model. 木兰花碱与斯皮诺辛的联合用药可提高 CUMS 小鼠模型的抗抑郁效果
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002284230240213064248
Fenghe Bi, Zhihui Wang, Yijing Guo, Menglin Xia, Xuehui Zhu, Wei Qiao
{"title":"A Combination of Magnoflorine and Spinosin Improves the Antidepressant effects on CUMS Mouse Model.","authors":"Fenghe Bi, Zhihui Wang, Yijing Guo, Menglin Xia, Xuehui Zhu, Wei Qiao","doi":"10.2174/0113892002284230240213064248","DOIUrl":"10.2174/0113892002284230240213064248","url":null,"abstract":"<p><strong>Background: </strong>Depression is a common neuropsychiatric disease. As a famous traditional Chinese medicine with significant anti-depressive and sleep-promoting effects, <i>Ziziphi Spinosae</i> Semen (ZSS) has attracted the attention of many researchers. Although it is well known that Magnoflorine (MAG) and Spinosin (SPI) were the main active components isolated from ZSS, there is a lack of research on the combined treatment of depression with these two ingredients.</p><p><strong>Methods: </strong>The shaking bottle method was used to simulate the human environment for detecting the changes in oil-water partition coefficient before and after the drug combination. Cell viability was evaluated by the MTT assay. To establish a mouse model of depression and insomnia by CUMS method, and then to explore the effect of combined administration of MAG and SPI on depression in CUMS model by observing behavior and analyzing pharmacokinetics.</p><p><strong>Results: </strong>The change in LogP values affected the lipid solubility of MAG and increased the water solubility of SPI, allowing them to penetrate more easily through the blood-brain barrier into the brain. Compared with the model group, MAG-SPI with a concentration of 60 μM significantly increased cell survival rate. In both the TST and FST experiments, the mice showed a decrease in immobilization time. Pharmacokinetic results showed that the pharmacokinetic parameters, C<sub>max</sub> and AUC of MAG and SPI, were increased in the case of combination, which resulted in enhancement of their relative bioavailability and improvement of <i>in vivo</i> effects.</p><p><strong>Conclusions: </strong>The present study demonstrated that a combination of MAG and SPI had a synergistic antidepressant effect in CUMS mouse model.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139982538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Safety Issues of Herb-Warfarin Interactions. 草药与华法林相互作用的安全问题。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002290846240228061506
Subhajit Hazra, Preet Amol Singh, Neha Bajwa
{"title":"Safety Issues of Herb-Warfarin Interactions.","authors":"Subhajit Hazra, Preet Amol Singh, Neha Bajwa","doi":"10.2174/0113892002290846240228061506","DOIUrl":"10.2174/0113892002290846240228061506","url":null,"abstract":"<p><p>Warfarin is a popular anticoagulant with high global demand. However, studies have underlined serious safety issues when warfarin is consumed concomitantly with herbs or its formulations. This review aimed to highlight the mechanisms behind herb-warfarin interactions while laying special emphasis on its PKPD interactions and evidence on Herb-Warfarin Interaction (HWI) with regards to three different scenarios, such as when warfarin is consumed with herbs, taken as foods or prescribed as medicine, or when used in special situations. A targeted literature methodology involving different scientific databases was adopted for acquiring information on the subject of HWIs. Results of the present study revealed some of the fatal consequences of HWI, including post-operative bleeding, thrombosis, subarachnoid hemorrhage, and subdural hematomas occurring as a result of interactions between warfarin and herbs or commonly associated food products from <i>Hypericum perforatum, Zingiber officinale, Vaccinium oxycoccos, Citrus paradisi</i>, and <i>Punica granatum</i>. In terms of PK-PD parameters, herbs, such as <i>Coptis chinensis</i> Franch. and <i>Phellodendron amurense</i> Rupr., were found to compete with warfarin for binding with plasma proteins, leading to an increase in free warfarin levels in the bloodstream, resulting in its augmented antithrombic effect. Besides, HWIs were also found to decrease International Normalised Ratio (INR) levels following the consumption of Persea americana or avocado. Therefore, there is an urgent need for an up-to-date interaction database to educate patients and healthcare providers on these interactions, besides promoting the adoption of novel technologies, such as natural language processing, by healthcare professionals to guide them in making informed decisions to avoid HWIs.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Phase I Clinical Study of the Pharmacokinetics and Safety of Prusogliptin Tablets in Subjects with Mild to Moderate Hepatic Insufficiency and Normal Liver Function. 轻度至中度肝功能不全且肝功能正常受试者服用普格列汀片的药代动力学和安全性 I 期临床研究
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002288120240221111336
Huiting Zhang, Yicong Bian, Weifeng Zhao, Liyan Miao, Hua Zhang, Juanjuan Cui, Xiaofang Zhang, Xueyuan Zhang, Wen Cai
{"title":"A Phase I Clinical Study of the Pharmacokinetics and Safety of Prusogliptin Tablets in Subjects with Mild to Moderate Hepatic Insufficiency and Normal Liver Function.","authors":"Huiting Zhang, Yicong Bian, Weifeng Zhao, Liyan Miao, Hua Zhang, Juanjuan Cui, Xiaofang Zhang, Xueyuan Zhang, Wen Cai","doi":"10.2174/0113892002288120240221111336","DOIUrl":"10.2174/0113892002288120240221111336","url":null,"abstract":"<p><strong>Background: </strong>Prusogliptin is a potent and selective DPP-4 inhibitor. In different animal models, Prusogliptin showed potential efficacy in the treatment of type 2 diabetes. However, the knowledge of its pharmacokinetics and safety in patients with liver dysfunction is limited.</p><p><strong>Objectives: </strong>The present study evaluated the pharmacokinetics and safety of Prusogliptin in subjects with mild or moderate hepatic impairment compared with healthy subjects.</p><p><strong>Methods: </strong>According to the liver function of the subjects, we divided them into a mild liver dysfunction group, a moderate liver dysfunction group and a normal liver function group. All subjects in three groups received a single oral dose of Prusogliptin 100-mg tablets. Pharmacokinetics and safety index collection was carried out before and after taking the drug. Plasma pharmacokinetics of Prusogliptin were evaluated, and geometric least- -squares mean (GLSM) and associated 90% confidence intervals for insufficient groups versus the control group were calculated for plasma exposures.</p><p><strong>Results: </strong>After a single oral administration of 100 mg of Prusogliptin tablets, the exposure level of Prusogliptin in subjects with mild liver dysfunction was slightly higher than that in healthy subjects. The exposure level of Prusogliptin was significantly increased in subjects with moderate liver dysfunction. There were no adverse events in this study.</p><p><strong>Conclusion: </strong>The exposure level of Prusogliptin in subjects with liver dysfunction was higher than that in healthy subjects. No participant was observed of adverse events. Prusogliptin tablets were safe and well tolerated in Chinese subjects with mild to moderate liver dysfunction and normal liver function.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluoropyrimidine Toxicity: the Hidden Secrets of DPYD. 氟嘧啶的毒性:DPYD 的隐秘。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002296707240311105527
Vangelis G Manolopoulos, Georgia Ragia
{"title":"Fluoropyrimidine Toxicity: the Hidden Secrets of DPYD.","authors":"Vangelis G Manolopoulos, Georgia Ragia","doi":"10.2174/0113892002296707240311105527","DOIUrl":"10.2174/0113892002296707240311105527","url":null,"abstract":"<p><strong>Background: </strong>Fluoropyrimidine-induced toxicity is a main limitation of therapy. Currently, polymorphisms in the DPYD gene, which encodes the 5-FU activation enzyme dihydropyrimidine dehydrogenase (DPD), are used to adjust the dosage and prevent toxicity. Despite the predictive value of DPYD genotyping, a great proportion of fluoropyrimidine toxicity cannot be solely explained by DPYD variations.</p><p><strong>Objective: </strong>We herein summarize additional sources of DPD enzyme activity variability, spanning from epigenetic regulation of DPYD expression, factors potentially inducing protein modifications, as well as drug-enzyme interactions that contribute to fluoropyrimidine toxicity.</p><p><strong>Results: </strong>While seminal <i>in vitro</i> studies provided evidence that DPYD promoter methylation downregulates DPD expression, the association of DPYD methylation with fluoropyrimidine toxicity was not replicated in clinical studies. Different non-coding RNA molecules, such as microRNA, piwi-RNAs, circular-RNAs and long non-coding RNAs, are involved in post-transcriptional DPYD regulation. DPD protein modifications and environmental factors affecting enzyme activity may also add a proportion to the pooled variability of DPD enzyme activity. Lastly, DPD-drug interactions are common in therapeutics, with the most well-characterized paradigm the withdrawal of sorivudine due to fluoropyrimidine toxicity deaths in 5-FU treated cancer patients; a mechanism involving DPD severe inhibition.</p><p><strong>Conclusions: </strong>DPYD polymorphisms are the main source of DPD variability. A study on DPYD epigenetics (both transcriptionally and post-transcriptionally) holds promise to provide insights into molecular pathways of fluoropyrimidine toxicity. Additional post-translational DPD modifications, as well as DPD inhibition by other drugs, may explain a proportion of enzyme activity variability. Therefore, there is still a lot we can learn about the DPYD/DPD fluoropyrimidine-induced toxicity machinery.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Analysis of Machine Learning Algorithms Evaluating the Single Nucleotide Polymorphisms of Metabolizing Enzymes with Clinical Outcomes Following Intravenous Paracetamol in Preterm Neonates with Patent Ductus Arteriosus. 评估患有动脉导管未闭的早产新生儿体内代谢酶单核苷酸多态性的机器学习算法与静脉注射扑热息痛临床结果的比较分析
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002289238240222072027
Kannan Sridharan, George Priya Doss C, Hephzibah Cathryn R, Thirumal Kumar D, Muna Al Jufairi
{"title":"Comparative Analysis of Machine Learning Algorithms Evaluating the Single Nucleotide Polymorphisms of Metabolizing Enzymes with Clinical Outcomes Following Intravenous Paracetamol in Preterm Neonates with Patent Ductus Arteriosus.","authors":"Kannan Sridharan, George Priya Doss C, Hephzibah Cathryn R, Thirumal Kumar D, Muna Al Jufairi","doi":"10.2174/0113892002289238240222072027","DOIUrl":"10.2174/0113892002289238240222072027","url":null,"abstract":"<p><strong>Aims: </strong>Pharmacogenomics has been identified to play a crucial role in determining drug response. The present study aimed to identify significant genetic predictor variables influencing the therapeutic effect of paracetamol for new indications in preterm neonates.</p><p><strong>Background: </strong>Paracetamol has recently been preferred as a first-line drug for managing Patent Ductus Arteriosus (PDA) in preterm neonates. Single Nucleotide Polymorphisms (SNPs) in CYP1A2, CYP2A6, CYP2D6, CYP2E1, and CYP3A4 have been observed to influence the therapeutic concentrations of paracetamol.</p><p><strong>Objectives: </strong>The purpose of this study was to evaluate various Machine Learning Algorithms (MLAs) and bioinformatics tools for identifying the key genotype predictor of therapeutic outcomes following paracetamol administration in neonates with PDA.</p><p><strong>Methods: </strong>Preterm neonates with hemodynamically significant PDA were recruited in this prospective, observational study. The following SNPs were evaluated: CYP2E1*5B, CYP2E1*2, CYP3A4*1B, CYP3A4*2, CYP3A4*3, CYP3A5*3, CYP3A5*7, CYP3A5*11, CYP1A2*1C, CYP1A2*1K, CYP1A2*3, CYP1A2*4, CYP1A2*6, and CYP2D6*10. Amongst the MLAs, Artificial Neural Network (ANN), C5.0 algorithm, Classification and Regression Tree analysis (CART), discriminant analysis, and logistic regression were evaluated for successful closure of PDA. Generalized linear regression, ANN, CART, and linear regression were used to evaluate maximum serum acetaminophen concentrations. A two-step cluster analysis was carried out for both outcomes. Area Under the Curve (AUC) and Relative Error (RE) were used as the accuracy estimates. Stability analysis was carried out using <i>in silico</i> tools, and Molecular Docking and Dynamics Studies were carried out for the above-mentioned enzymes.</p><p><strong>Results: </strong>Two-step cluster analyses have revealed CYP2D6*10 and CYP1A2*1C to be the key predictors of the successful closure of PDA and the maximum serum paracetamol concentrations in neonates. The ANN was observed with the maximum accuracy (AUC = 0.53) for predicting the successful closure of PDA with CYP2D6*10 as the most important predictor. Similarly, ANN was observed with the least RE (1.08) in predicting maximum serum paracetamol concentrations, with CYP2D6*10 as the most important predictor. Further MDS confirmed the conformational changes for P34A and P34S compared to the wildtype structure of CYP2D6 protein for stability, flexibility, compactness, hydrogen bond analysis, and the binding affinity when interacting with paracetamol, respectively. The alterations in enzyme activity of the mutant CYP2D6 were computed from the molecular simulation results.</p><p><strong>Conclusion: </strong>We have identified CYP2D6*10 and CYP1A2*1C polymorphisms to significantly predict the therapeutic outcomes following the administration of paracetamol in preterm neonates with PDA. Prospective studies are required","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of CYPs and Transporters in the Biotransformation and Transport of the Anti-hepatitis C Antiviral Agents Asunaprevir, Daclatasvir, and Beclabuvir: Impact of Liver Disease, Race and Drug-drug Interactions on Safety and Efficacy. CYPs和转运体在丙型肝炎抗病毒药物Asunaprevir、Daclatasvir和Beclabuvir的生物转化和转运中的作用:肝病、种族和药物相互作用对安全性和有效性的影响。
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002288832240213095622
Michael Murray
{"title":"The Role of CYPs and Transporters in the Biotransformation and Transport of the Anti-hepatitis C Antiviral Agents Asunaprevir, Daclatasvir, and Beclabuvir: Impact of Liver Disease, Race and Drug-drug Interactions on Safety and Efficacy.","authors":"Michael Murray","doi":"10.2174/0113892002288832240213095622","DOIUrl":"10.2174/0113892002288832240213095622","url":null,"abstract":"<p><p>Asunaprevir, daclatasvir, and beclabuvir are direct-acting antiviral agents used in the treatment of patients infected with hepatitis C genotype 1b. This article reviews the biotransformation and disposition of these drugs in relation to the safety and efficacy of therapy. CYP3A4 and 3A5 catalyze the oxidative biotransformation of the drugs, while P-glycoprotein mediates their efflux from tissues. Asunaprevir is also a substrate for the influx transporters OATP1B1 and OATP2B1 and the efflux transporter MRP2, while beclabuvir is also a substrate for the efflux transporter BCRP. Liver disease decreases the expression of CYPs and transporters that mediate drug metabolism and disposition. Serum asunaprevir concentrations, but not those of daclatasvir or beclabuvir, are increased in patients with severe liver disease, which may produce toxicity. Pharmacogenomic variation in CYPs and transporters also has the potential to disrupt therapy with asunaprevir, daclatasvir and beclabuvir; some variants are more prevalent in certain racial groups. Pharmacokinetic drug-drug interactions, especially where asunaprevir, daclatasvir, and beclabuvir are victim drugs, are mediated by coadministered rifampicin, ketoconazole and ritonavir, and are attributable to inhibition and/or induction of CYPs and transporters. Conversely, there is also evidence that asunaprevir, daclatasvir and beclabuvir are perpetrators of drug interactions with coadministered rosuvastatin and dextromethorphan. Together, liver disease, pharmacogenomic variation and drug-drug interactions may disrupt therapy with asunaprevir, daclatasvir and beclabuvir due to the impaired function of important CYPs and transporters.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ. 核因子 Rev-erbɑ 调节肝脏代谢的最新进展
IF 2.1 4区 医学
Current drug metabolism Pub Date : 2024-01-01 DOI: 10.2174/0113892002290055240212074758
Qi Zhang, Yutong Chen, Jingqi Li, Haishan Xia, Yongbin Tong, Yuyu Liu
{"title":"Recent Advances in Hepatic Metabolic Regulation by the Nuclear Factor Rev-erbɑ.","authors":"Qi Zhang, Yutong Chen, Jingqi Li, Haishan Xia, Yongbin Tong, Yuyu Liu","doi":"10.2174/0113892002290055240212074758","DOIUrl":"10.2174/0113892002290055240212074758","url":null,"abstract":"<p><p>Rev-erbɑ (NR1D1) is a nuclear receptor superfamily member that plays a vital role in mammalian molecular clocks and metabolism. Rev-erbɑ can regulate the metabolism of drugs and the body's glucose metabolism, lipid metabolism, and adipogenesis. It is even one of the important regulatory factors regulating the occurrence of metabolic diseases (e.g., diabetes, fatty liver). Metabolic enzymes mediate most drug metabolic reactions in the body. Rev-erbɑ has been recognized to regulate drug metabolic enzymes (such as Cyp2b10 and Ugt1a9). Therefore, this paper mainly reviewed that Rev-erbɑ regulates I and II metabolic enzymes in the liver to affect drug pharmacokinetics. The expression of these drug metabolic enzymes (up-regulated or down-regulated) is related to drug exposure and effects/ toxicity. In addition, our discussion extends to Rev-erbɑ regulating some transporters (such as P-gp, Mrp2, and Bcrp), as they also play an essential role in drug metabolism. Finally, we briefly describe the role and mechanism of nuclear receptor Rev-erbɑ in lipid and glucose homeostasis, obesity, and metabolic disorders syndrome. In conclusion, this paper aims to understand better the role and mechanism of Rev-erbɑ in regulating drug metabolism, lipid, glucose homeostasis, obesity, and metabolic disorders syndrome, which explores how to target Rev-erbɑ to guide the design and development of new drugs and provide scientific reference for the molecular mechanism of new drug development, rational drug use, and drug interaction.</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信