Doudou Li, Liping Chen, Yidan Chen, Lin Jiang, Rong Wang, Wenbin Li
{"title":"Temperature-sensitive Hydrogel: An Effective Treatment for Nasal Drug Delivery Targeting the Brain.","authors":"Doudou Li, Liping Chen, Yidan Chen, Lin Jiang, Rong Wang, Wenbin Li","doi":"10.2174/0113892002365157250422114917","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is highly protected by physiological barriers, in which the blood-brain barrier restricts the entry of most drugs. Intranasal drug delivery is a non-invasive way of drug delivery, which can cross the blood-brain barrier and achieve direct and efficient targeted delivery to the brain. Therefore, it has great po-tential in application to the treatment of brain diseases. Temperature-sensitive hydrogels undergo a solution-gel transition with temperature change, and the gel form has good mucosal adsorption properties in the nasal cavity, which is commonly used for targeted delivery of drugs for brain diseases. In this article, by introducing the transport mechanism of brain targeting after nasal administration, combined with the prescription design and basic performance study of temperature-sensitive nasal hydrogel, we summarized the research on the role that temperature-sensitive hydrogel plays brain targeting after via nasal administration, aiming to provide a reference for the development of therapeutic drugs for cerebral diseases and their clinical application. A graph-ical summary is shown in Fig. (1).</p>","PeriodicalId":10770,"journal":{"name":"Current drug metabolism","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892002365157250422114917","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The brain is highly protected by physiological barriers, in which the blood-brain barrier restricts the entry of most drugs. Intranasal drug delivery is a non-invasive way of drug delivery, which can cross the blood-brain barrier and achieve direct and efficient targeted delivery to the brain. Therefore, it has great po-tential in application to the treatment of brain diseases. Temperature-sensitive hydrogels undergo a solution-gel transition with temperature change, and the gel form has good mucosal adsorption properties in the nasal cavity, which is commonly used for targeted delivery of drugs for brain diseases. In this article, by introducing the transport mechanism of brain targeting after nasal administration, combined with the prescription design and basic performance study of temperature-sensitive nasal hydrogel, we summarized the research on the role that temperature-sensitive hydrogel plays brain targeting after via nasal administration, aiming to provide a reference for the development of therapeutic drugs for cerebral diseases and their clinical application. A graph-ical summary is shown in Fig. (1).
期刊介绍:
Current Drug Metabolism aims to cover all the latest and outstanding developments in drug metabolism, pharmacokinetics, and drug disposition. The journal serves as an international forum for the publication of full-length/mini review, research articles and guest edited issues in drug metabolism. Current Drug Metabolism is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the most important developments. The journal covers the following general topic areas: pharmaceutics, pharmacokinetics, toxicology, and most importantly drug metabolism.
More specifically, in vitro and in vivo drug metabolism of phase I and phase II enzymes or metabolic pathways; drug-drug interactions and enzyme kinetics; pharmacokinetics, pharmacokinetic-pharmacodynamic modeling, and toxicokinetics; interspecies differences in metabolism or pharmacokinetics, species scaling and extrapolations; drug transporters; target organ toxicity and interindividual variability in drug exposure-response; extrahepatic metabolism; bioactivation, reactive metabolites, and developments for the identification of drug metabolites. Preclinical and clinical reviews describing the drug metabolism and pharmacokinetics of marketed drugs or drug classes.