ASM Failure Analysis Case Histories: Power Generating Equipment最新文献

筛选
英文 中文
Rupture of a Carbon Steel Tube Because of Hydrogen-Induced Cracking and Decarburization 碳素钢管因氢致开裂和脱碳而破裂
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c0048309
{"title":"Rupture of a Carbon Steel Tube Because of Hydrogen-Induced Cracking and Decarburization","authors":"","doi":"10.31399/asm.fach.power.c0048309","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c0048309","url":null,"abstract":"\u0000 A 75 mm OD x 7.4 mm wall thickness carbon steel boiler tube ruptured. A substantial degree of corrosion on the water-side surface leaving a rough area in the immediate vicinity of the rupture was revealed by visual examination. Decarburization and extensive discontinuous intergranular cracking was revealed by microscopic examination of a cross section through the tube wall at the fracture. It was concluded that the rupture occurred because of hydrogen damage involving the formation of methane by the reaction of dissolved hydrogen with carbon in the steel. Hydrogen was produced by the chemical reaction that corroded the internal tube surface. Steel embrittled by hydrogen can be restored only if grain boundary cracking or decarburization had not occurred but since the material embrittled in this manner, its replacement was recommended.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121360899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fractured Turbine Blades 涡轮叶片断裂
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c9001228
F. Naumann, F. Spies
{"title":"Fractured Turbine Blades","authors":"F. Naumann, F. Spies","doi":"10.31399/asm.fach.power.c9001228","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c9001228","url":null,"abstract":"\u0000 In an electric power station, seven turbine blades out of 112 broke or cracked within 8 to 14 months after commencement of operation. The blades in question were all located on the last running wheel in the low pressure section of a 35,000 kW high pressure condensing turbine. They were milled blades without binding wires and cover band. They did not fracture at the fastening, i.e. the location of highest bending stress, but in a central region which was 165 to 225 mm away from the gripped end. The blades were fabricated from a stainless heat-treatable chromium steel containing 0.2C and 13.9Cr. Microstructural examination showed the blades were destroyed by flexural vibrations which evidently reached their maximum amplitude at the location of fracture. Erosion of the inlet edge, possibly in connection with vibration-induced corrosion cracking, contributed to fracture.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125944776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Identification of the Origins of Some Deposits in a Steam Turbine 某汽轮机中某些沉积物成因的鉴定
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c9001658
J. Thornley, J. K. Sutherland
{"title":"The Identification of the Origins of Some Deposits in a Steam Turbine","authors":"J. Thornley, J. K. Sutherland","doi":"10.31399/asm.fach.power.c9001658","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c9001658","url":null,"abstract":"\u0000 The intermediate pressure (IP) turbine of a thermal generating station is driven by steam from the boiler's reheater. On one particular IP turbine, a thick deposit was found on the insides of the rotor blade shrouds in two instances two years apart. The source of the deposits was not known; bulk chemical analysis had simply shown that iron was a major component. Optical microscopy and electron microprobe analysis were used to identify the deposits. In the first instance, the deposit was found to be debris that was left in the reheater tubes during boiler modification and swept to the turbine by the steam. There were still some of these debris particles present when the incident two years later was investigated but generally the second deposit was found to be of two layer oxide particles which were shown to have spalled from 2-14% chromium reheater tube surfaces.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129815785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failure of a Steel Superheater Tube 钢过热器管失效
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c0091028
{"title":"Failure of a Steel Superheater Tube","authors":"","doi":"10.31399/asm.fach.power.c0091028","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c0091028","url":null,"abstract":"\u0000 Failure occurred in a steel superheater tube in a power plant. The tube was specified as ASTM A 213 grade T 22, and the reported operating conditions were 13 MPa (1900 psi) at 482 deg C (900 deg F). The tube carried superheated steam and was coal fired. Investigation (visual inspection, 2% nital etched 297x images, chemical analysis, and SEM fractographs) supported the conclusion that the superheater tube failed as a result of long-term overheating. Substantial creep damage reduced the strength of the tube to the point that overload failure occurred. No recommendations were made.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128300400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrosion of Copper Cooling-Water Tubing in a Heat Exchanger 换热器中铜冷却水管的腐蚀
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c9001700
A.H. Khan
{"title":"Corrosion of Copper Cooling-Water Tubing in a Heat Exchanger","authors":"A.H. Khan","doi":"10.31399/asm.fach.power.c9001700","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c9001700","url":null,"abstract":"\u0000 A straight-tube cooler type heat exchanger had been in service for about ten years serving a coal pulverizer in Georgia. Non-potable cooling water from a local lake passed through the inner surfaces of the copper tubing and was cooling the hot oil that surrounded the outer diametral surfaces. Several of the heat exchangers used in the same application at the plant had experienced a severe reduction in efficiency in the past few years. One heat exchanger reportedly experienced some form of leakage following discovery of oil contaminating the cooling water. This heat exchanger was the subject of a failure investigation to determine the cause and location of the leaks. Corrosion products primarily contained copper oxide, as would be expected from a copper tubing. The product also exhibited the presence of a significant amount of iron oxides. Metallographic cross sectioning of the tubes and microscopic analysis revealed several large and small well rounded corrosion pits present at the inner diametral surfaces. The cause of corrosion was attributed to corrosive waters that were not only corroding the copper, but were corroding steel pipes upstream from the tubing.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126795919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Gas Turbine Hot Section Blade Cracking under Oxidation, TMF, and Creep Conditions 氧化、TMF和蠕变条件下燃气轮机热段叶片开裂的评价
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c0090114
{"title":"Evaluation of Gas Turbine Hot Section Blade Cracking under Oxidation, TMF, and Creep Conditions","authors":"","doi":"10.31399/asm.fach.power.c0090114","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c0090114","url":null,"abstract":"\u0000 The first-stage blades in a model 501D5 gas turbine had 16 cooling holes. After 32,000 h of service, the blades exhibited cracking at the cooling holes. The blade material was wrought Udimet 520 alloy, with nominal composition of 57Ni-19Cr-12Co-6Mo-1W-2Al-3Ti-0.05C-0.005B. The cooling holes' surface was not coated. Investigation supported the conclusions that the cracking at the cooling holes was due to grain-boundary oxidation and nitridation at the cooling hole surface, embrittlement and loss of local ductility of the base alloy, temperature gradient from the airfoil surface to the cooling holes, which led to relatively high thermal stresses at the holes located at the thicker sections of the airfoil, and stress concentration of 2.5 at the cooling hole and the presence of relatively high total strain (an inelastic strain of 1.2%) at the cooling hole surface. Recommendations include applying the specially designed methods given in this case study to estimate the metal temperature and stresses in order to predict the life of turbine blades under similar operating conditions.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122265623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failure Analysis of a Large Centrifugal Blower 大型离心鼓风机的失效分析
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c9001136
R. Tait, G. Garrett, D. P. Spencer
{"title":"Failure Analysis of a Large Centrifugal Blower","authors":"R. Tait, G. Garrett, D. P. Spencer","doi":"10.31399/asm.fach.power.c9001136","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c9001136","url":null,"abstract":"\u0000 A fracture mechanics based failure analysis and life prediction of a large centrifugal fan made from low-carbon, medium-strength steel was undertaken following shortcomings in attempts to explain its fatigue life from start stop cycles alone. Measurements of the fracture toughness and flaw size at failure, coupled with quantitative SEM fractography using striation spacing methods, revealed that the cyclic stress amplitudes just prior to failure were much larger than expected, in this particular case. Subsequent improvements in fan design and fabrication have effectively alleviated the problem of slow, high cycle fatigue crack growth, at normal operating stresses in similar fans.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134057369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cracking in a Steam Generator U-Tube 蒸汽发生器u形管开裂
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c0090277
{"title":"Cracking in a Steam Generator U-Tube","authors":"","doi":"10.31399/asm.fach.power.c0090277","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c0090277","url":null,"abstract":"\u0000 A rupture of a thirty-year-old U-tube on a steam generator for a closed-cycle pressurized-water nuclear power plant occurred, resulting in limited release of reactor water. A typical tube bundle can be over 9 m (30 ft) tall and 3 m (10 ft) in diam with over 3,000 22-mm (7/8-in.) diam Inconel Alloy 600 tubes. Tube support plates (TSP) separate the tubes and allow flow of the heating water/steam. Inconel Alloy 600 is susceptible to intergranular stress-corrosion cracking over time, so investigation included review of operational records, maintenance history, and procedures. It also included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching” of the U-tubes, combined with the operational stresses, caused high stresses at the location where the tube cracked. The stresses were consistent with those required to initiate and propagate a longitudinal crack.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126593013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failure of Gas Turbine Last- Stage Bucket 燃气轮机末级斗失效
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c0091761
{"title":"Failure of Gas Turbine Last- Stage Bucket","authors":"","doi":"10.31399/asm.fach.power.c0091761","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c0091761","url":null,"abstract":"\u0000 Turbine buckets in a 37.5-MW gas turbine made of Udimet 500 superalloy failed in service. The power plant was located 1 km (0.6 miles) from the Pacific Ocean and operated on No. 2 diesel fuel, which was supplied by tanker ship. Turbine bucket failures occurred on three units after 2500 to 6400 h of operation. Investigation (visual inspection, metallographic examination, and stress analysis) supported the conclusion that the differing microstructure of the airfoil resulted in changes in mechanical properties. Because normal operation includes cycling of loads and temperatures, the shroud tip fractured due to thermomechanical fatigue in its degraded state. Recommendations included special chromium or silicon-rich coating to minimize corrosion in gas turbines operating in a marine environment with operating temperatures in the range of type 2 corrosion (650 to 750 deg C, or 1200 to 1380 deg F). Additionally, it was suggested that fuel delivery, handling, and treatment be high quality, to maintain fuel contamination within design limits, and inlet air filtration must be designed for the coastal site. Also, changing the bucket tip by increasing its thickness and changing the casting technique would reduce the stress and make the design more tolerant of corrosion.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133274635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Case of Caustic Cracking at a Tube Expansion 膨胀管腐蚀开裂一例
ASM Failure Analysis Case Histories: Power Generating Equipment Pub Date : 2019-06-01 DOI: 10.31399/asm.fach.power.c9001406
{"title":"A Case of Caustic Cracking at a Tube Expansion","authors":"","doi":"10.31399/asm.fach.power.c9001406","DOIUrl":"https://doi.org/10.31399/asm.fach.power.c9001406","url":null,"abstract":"\u0000 Caustic cracking is the term used to describe one of the forms in which stress-corrosion cracking manifests itself in carbon steels. In the present study, persistent leakage occurred after ten weeks of service from tube expansions in the steam and mud drum of a two-drum D type boiler, which failed to respond to repeated expansion. The leakage was traced to circumferential cracking in the portion of Fe-0.11C-0.46Mn-0.018S-0.011P tubes within the expanded region. Microscopic examination indicated that all cracks started from the outer surface of the tubes in the expanded portion. The form of cracking which was mostly intergranular. Examination at higher magnification disclosed that a selective attack had taken place on the carbide constituents of the pearlite grains. An alkaline deposit on the fireside surface of the tube resulted from the evaporation of boiler water which had found its way past the tube expansions. This indicated that this operation had not resulted in a satisfactorily tight joint.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134639683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信