涡轮叶片断裂

F. Naumann, F. Spies
{"title":"涡轮叶片断裂","authors":"F. Naumann, F. Spies","doi":"10.31399/asm.fach.power.c9001228","DOIUrl":null,"url":null,"abstract":"\n In an electric power station, seven turbine blades out of 112 broke or cracked within 8 to 14 months after commencement of operation. The blades in question were all located on the last running wheel in the low pressure section of a 35,000 kW high pressure condensing turbine. They were milled blades without binding wires and cover band. They did not fracture at the fastening, i.e. the location of highest bending stress, but in a central region which was 165 to 225 mm away from the gripped end. The blades were fabricated from a stainless heat-treatable chromium steel containing 0.2C and 13.9Cr. Microstructural examination showed the blades were destroyed by flexural vibrations which evidently reached their maximum amplitude at the location of fracture. Erosion of the inlet edge, possibly in connection with vibration-induced corrosion cracking, contributed to fracture.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractured Turbine Blades\",\"authors\":\"F. Naumann, F. Spies\",\"doi\":\"10.31399/asm.fach.power.c9001228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In an electric power station, seven turbine blades out of 112 broke or cracked within 8 to 14 months after commencement of operation. The blades in question were all located on the last running wheel in the low pressure section of a 35,000 kW high pressure condensing turbine. They were milled blades without binding wires and cover band. They did not fracture at the fastening, i.e. the location of highest bending stress, but in a central region which was 165 to 225 mm away from the gripped end. The blades were fabricated from a stainless heat-treatable chromium steel containing 0.2C and 13.9Cr. Microstructural examination showed the blades were destroyed by flexural vibrations which evidently reached their maximum amplitude at the location of fracture. Erosion of the inlet edge, possibly in connection with vibration-induced corrosion cracking, contributed to fracture.\",\"PeriodicalId\":107406,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.power.c9001228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Power Generating Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.power.c9001228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在某电站,112个涡轮机叶片中有7个在开始运行后的8至14个月内破裂或破裂。这些叶片都位于35000千瓦高压冷凝汽轮机低压段的最后一个运转轮上。它们是磨碎的刀片,没有绑扎线和盖带。它们没有在紧固处断裂,即最高弯曲应力的位置,而是在距离夹紧端165至225毫米的中心区域断裂。叶片由含0.2C和13.9Cr的不锈钢热处理铬钢制成。显微组织检查表明叶片受弯曲振动破坏,弯曲振动在断口处明显达到最大振幅。入口边缘的侵蚀,可能与振动引起的腐蚀开裂有关,导致了断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractured Turbine Blades
In an electric power station, seven turbine blades out of 112 broke or cracked within 8 to 14 months after commencement of operation. The blades in question were all located on the last running wheel in the low pressure section of a 35,000 kW high pressure condensing turbine. They were milled blades without binding wires and cover band. They did not fracture at the fastening, i.e. the location of highest bending stress, but in a central region which was 165 to 225 mm away from the gripped end. The blades were fabricated from a stainless heat-treatable chromium steel containing 0.2C and 13.9Cr. Microstructural examination showed the blades were destroyed by flexural vibrations which evidently reached their maximum amplitude at the location of fracture. Erosion of the inlet edge, possibly in connection with vibration-induced corrosion cracking, contributed to fracture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信