{"title":"蒸汽发生器u形管开裂","authors":"","doi":"10.31399/asm.fach.power.c0090277","DOIUrl":null,"url":null,"abstract":"\n A rupture of a thirty-year-old U-tube on a steam generator for a closed-cycle pressurized-water nuclear power plant occurred, resulting in limited release of reactor water. A typical tube bundle can be over 9 m (30 ft) tall and 3 m (10 ft) in diam with over 3,000 22-mm (7/8-in.) diam Inconel Alloy 600 tubes. Tube support plates (TSP) separate the tubes and allow flow of the heating water/steam. Inconel Alloy 600 is susceptible to intergranular stress-corrosion cracking over time, so investigation included review of operational records, maintenance history, and procedures. It also included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching” of the U-tubes, combined with the operational stresses, caused high stresses at the location where the tube cracked. The stresses were consistent with those required to initiate and propagate a longitudinal crack.","PeriodicalId":107406,"journal":{"name":"ASM Failure Analysis Case Histories: Power Generating Equipment","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cracking in a Steam Generator U-Tube\",\"authors\":\"\",\"doi\":\"10.31399/asm.fach.power.c0090277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A rupture of a thirty-year-old U-tube on a steam generator for a closed-cycle pressurized-water nuclear power plant occurred, resulting in limited release of reactor water. A typical tube bundle can be over 9 m (30 ft) tall and 3 m (10 ft) in diam with over 3,000 22-mm (7/8-in.) diam Inconel Alloy 600 tubes. Tube support plates (TSP) separate the tubes and allow flow of the heating water/steam. Inconel Alloy 600 is susceptible to intergranular stress-corrosion cracking over time, so investigation included review of operational records, maintenance history, and procedures. It also included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching” of the U-tubes, combined with the operational stresses, caused high stresses at the location where the tube cracked. The stresses were consistent with those required to initiate and propagate a longitudinal crack.\",\"PeriodicalId\":107406,\"journal\":{\"name\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASM Failure Analysis Case Histories: Power Generating Equipment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.fach.power.c0090277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASM Failure Analysis Case Histories: Power Generating Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.fach.power.c0090277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A rupture of a thirty-year-old U-tube on a steam generator for a closed-cycle pressurized-water nuclear power plant occurred, resulting in limited release of reactor water. A typical tube bundle can be over 9 m (30 ft) tall and 3 m (10 ft) in diam with over 3,000 22-mm (7/8-in.) diam Inconel Alloy 600 tubes. Tube support plates (TSP) separate the tubes and allow flow of the heating water/steam. Inconel Alloy 600 is susceptible to intergranular stress-corrosion cracking over time, so investigation included review of operational records, maintenance history, and procedures. It also included FEA (thermal gradients, nonlinear material behavior, residual stress, changes in wall thickness during the formation of U-bends, and TSP distortions near the ruptured tube) of three-dimensional solid models of the U-tubes. The conclusion was that distortion of the TSPs and resulting “pinching” of the U-tubes, combined with the operational stresses, caused high stresses at the location where the tube cracked. The stresses were consistent with those required to initiate and propagate a longitudinal crack.