Critical Reviews in Microbiology最新文献

筛选
英文 中文
Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications. 原花青素的抗菌和抗生物膜特性:临床和生物技术应用潜力。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-20 DOI: 10.1080/1040841X.2024.2404509
Mariana M G Mattos, Sérgio Antunes Filho, Gabriel R Martins, Lara Souza Venturi, Vinícius Benjamim Canetti, Fabienne Antunes Ferreira, Debora Foguel, Ayla Sant'Ana da Silva
{"title":"Antimicrobial and antibiofilm properties of procyanidins: potential for clinical and biotechnological applications.","authors":"Mariana M G Mattos, Sérgio Antunes Filho, Gabriel R Martins, Lara Souza Venturi, Vinícius Benjamim Canetti, Fabienne Antunes Ferreira, Debora Foguel, Ayla Sant'Ana da Silva","doi":"10.1080/1040841X.2024.2404509","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2404509","url":null,"abstract":"<p><p>Procyanidins (PCs) have emerged as agents with potential antimicrobial and antibiofilm activities, although their mechanisms of action and structure-activity relationships remain poorly understood. This review assessed the potential mechanisms of action and applications of these compounds to explore these aspects. Studies on the antimicrobial properties of PCs suggest that they are involved in osmotic imbalance, DNA interactions and metabolic disruption. Although less studied, their antibiofilm activities include antiadhesive effects and the modulation of mobility and quorum sensing. However, most research has used uncharacterized plant extracts for <i>in vitro</i> assays, limiting the understanding of the structure-activity relationships of PCs and their <i>in vivo</i> mechanisms. Clinical trials on the antimicrobial and antibiofilm properties of PCs have not clarified these issues due to nonstandardized methodologies, inadequate chemical characterization, and the limited number of studies, preventing a consensus and evaluation of the <i>in vivo</i> effects. Additionally, patent analysis revealed that technological developments in the antimicrobial and antibiofilm uses of PCs are concentrated in health care and dental care, but new biotechnological uses are emerging. Therefore, while PCs are promising antimicrobial and antibiofilm compounds, further research into their chemical structures and mechanisms of action is crucial for evidence-based applications in biotechnology and health care.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-24"},"PeriodicalIF":6.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precise pathogen quantification by CRISPR-Cas: a sweet but tough nut to crack. 利用 CRISPR-Cas 对病原体进行精确定量:甜蜜但难以攻克的难题。
IF 6.5 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-17 DOI: 10.1080/1040841x.2024.2404041
Zhihao Yao,Wanglu Li,Kaiyu He,Hongmei Wang,Yan Xu,Xiahong Xu,Qun Wu,Liu Wang
{"title":"Precise pathogen quantification by CRISPR-Cas: a sweet but tough nut to crack.","authors":"Zhihao Yao,Wanglu Li,Kaiyu He,Hongmei Wang,Yan Xu,Xiahong Xu,Qun Wu,Liu Wang","doi":"10.1080/1040841x.2024.2404041","DOIUrl":"https://doi.org/10.1080/1040841x.2024.2404041","url":null,"abstract":"Pathogen detection is increasingly applied in medical diagnosis, food processing and safety, and environmental monitoring. Rapid, sensitive, and accurate pathogen quantification is the most critical prerequisite for assessing protocols and preventing risks. Among various methods evolved, those based on clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) have been developed as important pathogen detection strategies due to their distinct advantages of rapid target recognition, programmability, ultra-specificity, and potential for scalability of point-of-care testing (POCT). However, arguments and concerns on the quantitative capability of CRISPR-based strategies are ongoing. Herein, we systematically overview CRISPR-based pathogen quantification strategies according to the principles, properties, and application scenarios. Notably, we review future challenges and perspectives to address the of precise pathogen quantification by CRISPR-Cas. We hope the insights presented in this review will benefit development of CRISPR-based pathogen detection methods.","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"12 1","pages":"1-19"},"PeriodicalIF":6.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142254854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Male-specific bacteriophages and their potential on combating the spreading of T4SS-bearing antimicrobial resistance plasmids. 雄性特异性噬菌体及其在阻止携带 T4SS 的抗菌性质粒传播方面的潜力。
IF 6.5 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-10 DOI: 10.1080/1040841x.2024.2400150
Jun Li,Pilar García,Xing Ji,Ran Wang,Tao He
{"title":"Male-specific bacteriophages and their potential on combating the spreading of T4SS-bearing antimicrobial resistance plasmids.","authors":"Jun Li,Pilar García,Xing Ji,Ran Wang,Tao He","doi":"10.1080/1040841x.2024.2400150","DOIUrl":"https://doi.org/10.1080/1040841x.2024.2400150","url":null,"abstract":"Antimicrobial resistance (AMR) has been recognized as an important health crisis in the twenty first century. Type IV secretion systems (T4SSs) play key roles in the dissemination of AMR plasmids. Novel strategies that combat AMR problem by targeting T4SS sprung up in recent years. Here, we focus on the strategy of male-specific phages that could target and kill bacteria carrying conjugative AMR plasmids encoding T4SSs. We reviewed the recent advances in male-specific phages, including anti-conjugation mechanisms, clinical isolation and identification methods, classification and characteristics, in vitro and in vivo anti-conjugation efficacy and improving strategies. Male-specific phages constitute exciting candidates for developing sustainable anti-resistance biocontrol applications.","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":"9 1","pages":"1-12"},"PeriodicalIF":6.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142179904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pseudomonas aeruginosa: metabolic allies and adversaries in the world of polymicrobial infections. 铜绿假单胞菌:多微生物感染世界中的代谢盟友和对手。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-03 DOI: 10.1080/1040841X.2024.2397359
Chandni Sachdeva, Kapaettu Satyamoorthy, Thokur Sreepathy Murali
{"title":"<i>Pseudomonas aeruginosa</i>: metabolic allies and adversaries in the world of polymicrobial infections.","authors":"Chandni Sachdeva, Kapaettu Satyamoorthy, Thokur Sreepathy Murali","doi":"10.1080/1040841X.2024.2397359","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2397359","url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i> (PA), an opportunistic human pathogen that is frequently linked with chronic infections in immunocompromised individuals, is also metabolically versatile, and thrives in diverse environments. Additionally, studies report that PA can interact with other microorganisms, such as bacteria, and fungi, producing unique metabolites that can modulate the host immune response, and contribute to disease pathogenesis. This review summarizes the current knowledge related to the metabolic interactions of PA with other microorganisms (<i>Staphylococcus</i>, <i>Acinetobacter</i>, <i>Klebsiella</i>, <i>Enterococcus</i>, and <i>Candida</i>) and human hosts, and the importance of these interactions in a polymicrobial context. Further, we highlight the potential applications of studying these metabolic interactions toward designing better diagnostic tools, and therapeutic strategies to prevent, and treat infections caused by this pathogen.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-20"},"PeriodicalIF":6.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interplay between lipid metabolism, lipid droplets and RNA virus replication. 脂质代谢、脂滴和 RNA 病毒复制之间的相互作用
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-01 Epub Date: 2023-06-22 DOI: 10.1080/1040841X.2023.2224424
Mónica A Farías, Benjamín Diethelm-Varela, Alexis M Kalergis, Pablo A González
{"title":"Interplay between lipid metabolism, lipid droplets and RNA virus replication.","authors":"Mónica A Farías, Benjamín Diethelm-Varela, Alexis M Kalergis, Pablo A González","doi":"10.1080/1040841X.2023.2224424","DOIUrl":"10.1080/1040841X.2023.2224424","url":null,"abstract":"<p><p>Lipids play essential roles in the cell as components of cellular membranes, signaling molecules, and energy storage sources. Lipid droplets are cellular organelles composed of neutral lipids, such as triglycerides and cholesterol esters, and are also considered as cellular energy reserves, yet new functions have been recently associated with these structures, such as regulators of oxidative stress and cellular lipotoxicity, as well as modulators of pathogen infection through immune regulation. Lipid metabolism and lipid droplets participate in the infection process of many RNA viruses and control their replication and assembly, among others. Here, we review and discuss the contribution of lipid metabolism and lipid droplets over the replication cycle of RNA viruses, altogether pointing out potentially new pharmacological antiviral targets associated with lipid metabolism.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"515-539"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9680366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microparticles and nanoparticles-based approaches to improve oral treatment of Helicobacter pylori infection. 基于微粒和纳米粒子的方法改善幽门螺杆菌感染的口腔治疗。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-01 Epub Date: 2023-10-28 DOI: 10.1080/1040841X.2023.2274835
Jessyca Aparecida Paes Dutra, Suzana Gonçalves Carvalho, Aline Soares de Oliveira, Jéssica Raquel Borges Monteiro, Jéssica Rodrigues Pereira de Oliveira Borlot, Marcela Tavares Luiz, Tais Maria Bauab, Rodrigo Rezende Kitagawa, Marlus Chorilli
{"title":"Microparticles and nanoparticles-based approaches to improve oral treatment of <i>Helicobacter pylori</i> infection.","authors":"Jessyca Aparecida Paes Dutra, Suzana Gonçalves Carvalho, Aline Soares de Oliveira, Jéssica Raquel Borges Monteiro, Jéssica Rodrigues Pereira de Oliveira Borlot, Marcela Tavares Luiz, Tais Maria Bauab, Rodrigo Rezende Kitagawa, Marlus Chorilli","doi":"10.1080/1040841X.2023.2274835","DOIUrl":"10.1080/1040841X.2023.2274835","url":null,"abstract":"<p><p><i>Helicobacter pylori</i> is a gram-negative, spiral-shaped, flagellated bacterium that colonizes the stomach of half the world's population. <i>Helicobacter pylori</i> infection causes pathologies of varying severity. Standard oral therapy fails in 15-20% since the barriers of the oral route decrease the bioavailability of antibiotics and the intrinsic factors of bacteria increase the rates of resistance. Nanoparticles and microparticles are promising strategies for drug delivery into the gastric mucosa and targeting <i>H. pylori</i>. The variety of building blocks creates systems with distinct colloidal, surface, and biological properties. These features improve drug-pathogen interactions, eliminate drug depletion and overuse, and enable the association of multiple actives combating <i>H. pylori</i> on several fronts. Nanoparticles and microparticles are successfully used to overcome the barriers of the oral route, physicochemical inconveniences, and lack of selectivity of current therapy. They have proven efficient in employing promising anti-<i>H. pylori</i> compounds whose limitation is oral route instability, such as some antibiotics and natural products. However, the current challenge is the applicability of these strategies in clinical practice. For this reason, strategies employing a rational design are necessary, including in the development of nano- and microsystems for the oral route.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"728-749"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66783626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities. 探索微生物世界:全基因组测序及其在微生物群落特征研究中的应用综述。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-01 Epub Date: 2023-11-25 DOI: 10.1080/1040841X.2023.2282447
Suleiman Aminu, AbdulAziz Ascandari, Meriem Laamarti, Nour El Houda Safdi, Achraf El Allali, Rachid Daoud
{"title":"Exploring microbial worlds: a review of whole genome sequencing and its application in characterizing the microbial communities.","authors":"Suleiman Aminu, AbdulAziz Ascandari, Meriem Laamarti, Nour El Houda Safdi, Achraf El Allali, Rachid Daoud","doi":"10.1080/1040841X.2023.2282447","DOIUrl":"10.1080/1040841X.2023.2282447","url":null,"abstract":"<p><p>The classical microbiology techniques have inherent limitations in unraveling the complexity of microbial communities, necessitating the pivotal role of sequencing in studying the diversity of microbial communities. Whole genome sequencing (WGS) enables researchers to uncover the metabolic capabilities of the microbial community, providing valuable insights into the microbiome. Herein, we present an overview of the rapid advancements achieved thus far in the use of WGS in microbiome research. There was an upsurge in publications, particularly in 2021 and 2022 with the United States, China, and India leading the metagenomics research landscape. The Illumina platform has emerged as the widely adopted sequencing technology, whereas a significant focus of metagenomics has been on understanding the relationship between the gut microbiome and human health where distinct bacterial species have been linked to various diseases. Additionally, studies have explored the impact of human activities on microbial communities, including the potential spread of pathogenic bacteria and antimicrobial resistance genes in different ecosystems. Furthermore, WGS is used in investigating the microbiome of various animal species and plant tissues such as the rhizosphere microbiome. Overall, this review reflects the importance of WGS in metagenomics studies and underscores its remarkable power in illuminating the variety and intricacy of the microbiome in different environments.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"805-829"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138440361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects. 口腔微生物群对肺癌的影响机制及临床应用:当前挑战与前景。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-01 Epub Date: 2023-09-11 DOI: 10.1080/1040841X.2023.2247493
Qiong Ma, Xueke Li, Hua Jiang, Xi Fu, Liting You, Fengming You, Yifeng Ren
{"title":"Mechanisms underlying the effects, and clinical applications, of oral microbiota in lung cancer: current challenges and prospects.","authors":"Qiong Ma, Xueke Li, Hua Jiang, Xi Fu, Liting You, Fengming You, Yifeng Ren","doi":"10.1080/1040841X.2023.2247493","DOIUrl":"10.1080/1040841X.2023.2247493","url":null,"abstract":"<p><p>The oral cavity contains a site-specific microbiota that interacts with host cells to regulate many physiological processes in the human body. Emerging evidence has suggested that changes in the oral microbiota can increase the risk of lung cancer (LC), and the oral microbiota is also altered in patients with LC. Human and animal studies have shown that oral microecological disorders and/or specific oral bacteria may play an active role in the occurrence and development of LC through direct and/or indirect mechanisms. These studies support the potential of oral microbiota in the clinical treatment of LC. Oral microbiota may therefore be used in the prevention and treatment of LC and to improve the side effects of anticancer therapy by regulating the balance of the oral microbiome. Specific oral microbiota in LC may also be used as screening or predictive biomarkers. This review summarizes the main findings in research on oral microbiome-related LC and discusses current challenges and future research directions.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"631-652"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10554374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness. 促进胰腺β细胞功能的益生菌:从可能的作用机制到效果评估。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-01 Epub Date: 2023-09-13 DOI: 10.1080/1040841X.2023.2257776
Nazarii Kobyliak, Maria Khomenko, Tetyana Falalyeyeva, Alexandra Fedchenko, Oleksii Savchuk, Yuliya Tseyslyer, Liudmyla Ostapchenko
{"title":"Probiotics for pancreatic β-cell function: from possible mechanism of action to assessment of effectiveness.","authors":"Nazarii Kobyliak, Maria Khomenko, Tetyana Falalyeyeva, Alexandra Fedchenko, Oleksii Savchuk, Yuliya Tseyslyer, Liudmyla Ostapchenko","doi":"10.1080/1040841X.2023.2257776","DOIUrl":"10.1080/1040841X.2023.2257776","url":null,"abstract":"<p><p>Type 2 diabetes (T2D) is a metabolic disease characterized by chronic hyperglycemia because of insulin resistance (IR) andor pancreatic β-cell dysfunction. Last century research showed that gut microbiota has a direct effect on metabolism and metabolic diseases. New studies into the human microbiome and its connection with the host is making it possible to develop new therapies for a wide variety of diseases. Inflammation is a well-known precursor to metabolic syndrome, which increases the risk of hypertension, visceral obesity, and dyslipidemia, which can lead to T2D through the damage of pancreatic β-cell and reduce insulin secretion. Current understanding for beneficial effects of probiotics in T2D strictly rely on both animal and clinical data, which mostly focused on their impact on IR, anthropometric parameters, glycemic control and markers of chronic systemic inflammation. From the other hand, there is a lack of evidence-based probiotic efficacy on pancreatic β-cell function in terms of T2D and related metabolic disorders. Therefore, current review will focus on the efficacy of probiotics for the protection of β-cells damage and it`s mechanism in patients with T2D.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"663-683"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10233866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bile acid and its bidirectional interactions with gut microbiota: a review. 胆汁酸及其与肠道微生物群的双向相互作用:综述。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-09-01 Epub Date: 2023-09-27 DOI: 10.1080/1040841X.2023.2262020
Shuqi He, Lanxin Li, Yingning Yao, Jinhan Su, Suzhen Lei, Yi Zhang, Hongliang Zeng
{"title":"Bile acid and its bidirectional interactions with gut microbiota: a review.","authors":"Shuqi He, Lanxin Li, Yingning Yao, Jinhan Su, Suzhen Lei, Yi Zhang, Hongliang Zeng","doi":"10.1080/1040841X.2023.2262020","DOIUrl":"10.1080/1040841X.2023.2262020","url":null,"abstract":"<p><p>Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"684-701"},"PeriodicalIF":6.0,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41135174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信