Critical Reviews in Microbiology最新文献

筛选
英文 中文
The prospect of using nanotechnology to prevent and treat infections caused by Listeria monocytogenes. 利用纳米技术预防和治疗单核增生李斯特菌引起的感染的前景。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2025-01-15 DOI: 10.1080/1040841X.2025.2452571
Mohammad Vaziri, Maryam Abedini Baghbadorani, Monireh Khandaee Ghamsari, Somayeh Handali
{"title":"The prospect of using nanotechnology to prevent and treat infections caused by <i>Listeria monocytogenes</i>.","authors":"Mohammad Vaziri, Maryam Abedini Baghbadorani, Monireh Khandaee Ghamsari, Somayeh Handali","doi":"10.1080/1040841X.2025.2452571","DOIUrl":"https://doi.org/10.1080/1040841X.2025.2452571","url":null,"abstract":"<p><p><i>Listeria monocytogenes</i> (<i>L. monocytogenes</i>) is an opportunistic intracellular pathogen that causes listeriosis in human and leads to high mortality rate. <i>L. monocytogenes</i> is resistant to various antibiotics due to its ability to form biofilm. Designing a new generation of antibiotics is a very expensive and time-consuming process. Moreover, the protection of antibiotics <i>via</i> drug delivery system can promote their effectiveness and bioavailability. Nanomedicine can be a promising tool for treating intracellular bacteria and preventing the recurrence of infections. Nanocarriers can be employed as antibacterial agents or as a carrier for antibacterial agents. In the present review, the application of nanotechnology has been discussed for the prevention and treatment of <i>Listeria</i> infection. According to the studies, the application of nanomaterials can be a potential strategy to eradicate infections caused by <i>L. monocytogenes</i>.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-9"},"PeriodicalIF":6.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Could Neisseria gonorrhoeae have carcinogenic potential? A critical review of current evidence. 淋病奈瑟菌有致癌潜力吗?对现有证据的批判性回顾。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2025-01-08 DOI: 10.1080/1040841X.2024.2448166
Alexander Ngoo, Evgeny A Semchenko, Anthony Atack, Patrick B Thomas, Kate L Seib, Ian Vela, Elizabeth D Williams
{"title":"Could <i>Neisseria gonorrhoeae</i> have carcinogenic potential? A critical review of current evidence.","authors":"Alexander Ngoo, Evgeny A Semchenko, Anthony Atack, Patrick B Thomas, Kate L Seib, Ian Vela, Elizabeth D Williams","doi":"10.1080/1040841X.2024.2448166","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2448166","url":null,"abstract":"<p><p>There is growing evidence that microbial dysbiosis is intimately related to carcinogenesis across several types of human cancer. <i>Neisseria gonorrhoeae</i> is best known for causing acute exudative genitourinary infection in males. <i>N. gonorrhoeae</i> can also cause chronic, asymptomatic infection of the female genitourinary tract along with the oropharynx and rectum of both sexes. Epidemiological studies suggest that <i>N. gonorrhoeae</i> is an independent risk factor for cancer of the anus, bladder, cervix, prostate, and oropharynx. It is not clear however if this association is causal. The purpose of this review is to appraise epidemiological, experimental, and clinical data in order to understand the possible carcinogenic potential of this sexually transmitted bacterium.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-12"},"PeriodicalIF":6.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm. 细菌细胞外DNA作用的最新研究进展:以口腔生物膜为中心。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-12-08 DOI: 10.1080/1040841X.2024.2438117
Fengxue Geng, Junchao Liu, Jinwen Liu, Ze Lu, Yaping Pan
{"title":"Recent progress in understanding the role of bacterial extracellular DNA: focus on dental biofilm.","authors":"Fengxue Geng, Junchao Liu, Jinwen Liu, Ze Lu, Yaping Pan","doi":"10.1080/1040841X.2024.2438117","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2438117","url":null,"abstract":"<p><p>Dental biofilm is a highly complicated and dynamic structure comprising not only microbial communities but also the surrounding matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA (eDNA) and other biopolymers. In recent years, the important role of bacterial eDNA in dental biofilms has gradually attracted attention. In this review, we present recent studies on the presence, dynamic conformation and release of oral bacterial eDNA. Moreover, updated information on functions associated with oral bacterial eDNA in biofilm formation, antibiotic resistance, activation of the immune system and immune evasion is highlighted. Finally, we summarize the role of oral bacterial eDNA as a promising target for the treatment of oral diseases. Increasing insight into the versatile roles of bacterial eDNA in dental biofilms will facilitate the prevention and treatment of biofilm-induced oral infections.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-19"},"PeriodicalIF":6.0,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial biosynthesis of nucleos(t)ide analogs: applications, and engineering optimization. 微生物合成核苷类似物:应用和工程优化。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-12-01 DOI: 10.1080/1040841X.2024.2435668
Wenbin Yu, Xiang Wei, Yichuan Wu, Chunmiao Jiang, Yayi Tu, Bin He
{"title":"Microbial biosynthesis of nucleos(t)ide analogs: applications, and engineering optimization.","authors":"Wenbin Yu, Xiang Wei, Yichuan Wu, Chunmiao Jiang, Yayi Tu, Bin He","doi":"10.1080/1040841X.2024.2435668","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2435668","url":null,"abstract":"<p><p>Nucleos(t)ide analogs constitute a diverse group of compounds derived from nucleosides and nucleotides, playing a crucial role in various biological processes. These analogs exhibit a wide range of applications, including their use as additives, antiviral, and anticancer agents, which makes them valuable in food and medical research. In this review, we will explore the applications of nucleos(t)ide analogs across different fields and discuss the latest advances in engineering and optimization strategies aimed at improving their production efficiency and tailoring their properties for specific purposes. The article focuses on the design of microbial cell factories and their critical role in the production of nucleos(t)ide analogs. By leveraging microbial biosynthesis pathways and employing strategies such as metabolic engineering, researchers are optimizing the synthesis pathways of nucleos(t)ide analogs. This optimization enhances both the yield and diversity of nucleos(t)ide analogs, leading to the creation of novel compounds with enhanced bioactivity and therapeutic potential. Consequently, these efforts are driving significant advancements in drug discovery and biotechnology.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-19"},"PeriodicalIF":6.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766682","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions. 与龋齿和牙周病有关的口腔细菌产生的胞外囊泡:在微生物-宿主和种间相互作用中的作用。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-11-20 DOI: 10.1080/1040841X.2024.2427656
Camila Leiva-Sabadini, Paula Saavedra, Carla Inostroza, Sebastian Aguayo
{"title":"Extracellular vesicle production by oral bacteria related to dental caries and periodontal disease: role in microbe-host and interspecies interactions.","authors":"Camila Leiva-Sabadini, Paula Saavedra, Carla Inostroza, Sebastian Aguayo","doi":"10.1080/1040841X.2024.2427656","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2427656","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) are cell membrane-derived structures between 20-400 nm in size. In bacteria, EVs play a crucial role in molecule secretion, cell wall biogenesis, cell-cell communication, biofilm development, and host-pathogen interactions. Despite these increasing reports of bacterial-derived vesicles, there remains a limited number of studies that summarize oral bacterial EVs, their cargo, and their main biological functions. Therefore, the aim of this review is to present the latest research on oral bacteria-derived EVs and how they can modulate various physiological and pathological processes in the oral cavity, including the pathogenesis of highly relevant diseases such as dental caries and periodontitis and their systemic complications. Overall, caries-associated bacteria (such as <i>Streptococcus mutans</i>) as well as periodontal pathogens (including the red complex pathogens <i>Porphyromonas gingivalis</i>, <i>Tannerella forsythia</i>, and <i>Treponema denticola</i>) have all been shown to produce EVs that carry an array of virulent factors and molecules involved in biofilm and immune modulation, bacterial adhesion, and extracellular matrix degradation. As bacterial EV production is strongly impacted by genotypic and environmental variations, the inhibition of EV genesis and secretion remains a key potential future approach against oral diseases.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-18"},"PeriodicalIF":6.0,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings. 以生物信息学工具为目标,研究抗生素耐药基因在环境和临床环境中的传播和扩散。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-11-18 DOI: 10.1080/1040841X.2024.2429603
Chandra Kant Singh, Kushneet Kaur Sodhi
{"title":"Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings.","authors":"Chandra Kant Singh, Kushneet Kaur Sodhi","doi":"10.1080/1040841X.2024.2429603","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2429603","url":null,"abstract":"<p><p>Antibiotic resistance has expanded as a result of the careless use of antibiotics in the medical field, the food industry, agriculture, and other industries. By means of genetic recombination between commensal and pathogenic bacteria, the microbes obtain antibiotic resistance genes (ARGs). In bacteria, horizontal gene transfer (HGT) is the main mechanism for acquiring ARGs. With the development of high-throughput sequencing, ARG sequence analysis is now feasible and widely available. Preventing the spread of AMR in the environment requires the implementation of ARGs mapping. The metagenomic technique, in particular, has helped in identifying antibiotic resistance within microbial communities. Due to the exponential growth of experimental and clinical data, significant investments in computer capacity, and advancements in algorithmic techniques, the application of machine learning (ML) algorithms to the problem of AMR has attracted increasing attention over the past five years. The review article sheds a light on the application of bioinformatics for the antibiotic resistance monitoring. The most advanced tool currently being employed to catalog the resistome of various habitats are metagenomics and metatranscriptomics. The future lies in the hands of artificial intelligence (AI) and machine learning (ML) methods, to predict and optimize the interaction of antibiotic-resistant compounds with target proteins.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-19"},"PeriodicalIF":6.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and emerging treatment. 铜绿假单胞菌的抗生素耐药性:机制和新的治疗方法。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-11-18 DOI: 10.1080/1040841X.2024.2429599
Jian Yang, Jin-Fu Xu, Shuo Liang
{"title":"Antibiotic resistance in <i>Pseudomonas aeruginosa</i>: mechanisms and emerging treatment.","authors":"Jian Yang, Jin-Fu Xu, Shuo Liang","doi":"10.1080/1040841X.2024.2429599","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2429599","url":null,"abstract":"<p><p><i>Pseudomonas aeruginosa</i>, able to survive on the surfaces of medical devices, is a life-threatening pathogen that mainly leads to nosocomial infection especially in immunodeficient and cystic fibrosis (CF) patients. The antibiotic resistance in <i>P. aeruginosa</i> has become a world-concerning problem, which results in reduced and ineffective therapy efficacy. Besides intrinsic properties to decrease the intracellular content and activity of antibiotics, <i>P. aeruginosa</i> develops acquired resistance by gene mutation and acquisition, as well as adaptive resistance under specific situations. With in-depth research on drug resistance mechanisms and the development of biotechnology, innovative strategies have emerged and yielded benefits such as screening for new antibiotics based on artificial intelligence technology, utilizing drugs synergistically, optimizing administration, and developing biological therapy. This review summarizes the recent advances in the mechanisms of antibiotic resistance and emerging treatments for combating resistance, aiming to provide a reference for the development of therapy against drug-resistant <i>P. aeruginosa</i>.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-19"},"PeriodicalIF":6.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142647273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of bacterial extracellular vesicles in promoting antibiotic resistance. 细菌胞外囊泡在促进抗生素耐药性方面的作用。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-11-04 DOI: 10.1080/1040841X.2024.2423159
Shaoqi Qu, Yanfang Zhang, Liangyun Weng, Xinxin Shan, Ping Cheng, Qian Li, Lin Li
{"title":"The role of bacterial extracellular vesicles in promoting antibiotic resistance.","authors":"Shaoqi Qu, Yanfang Zhang, Liangyun Weng, Xinxin Shan, Ping Cheng, Qian Li, Lin Li","doi":"10.1080/1040841X.2024.2423159","DOIUrl":"https://doi.org/10.1080/1040841X.2024.2423159","url":null,"abstract":"<p><p>The burgeoning proliferation of infections attributed to multidrug-resistant (MDR) bacterial pathogens is profoundly undermining conventional chemotherapeutic modalities, portending a grave menace to global public health. The propagation of drug resistance among bacteria is fundamentally facilitated by bacterial interactions, with extracellular vesicles (EVs) assuming a critical role in interbacterial communication. Here, we briefly delineate the methodologies for isolation, extraction, and characterization of EVs from both Gram-negative and Gram-positive bacterial origins. We further investigate assorted methodologies to augment EV production, embracing physical stimulation, chemical elicitation, and genetic engineering. Moreover, we expound on the pivotal involvement of EVs in the facilitation of bacterial drug resistance proliferation and anticipate future trajectories of research and application potential. This overview of EV-mediated novel mechanisms of horizontal gene transfer implicated in antibiotic resistance among bacteria aims to obstruct the transmission conduits of bacterial drug resistance and thus fortify public health integrity.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1-18"},"PeriodicalIF":6.0,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular imaging of bacterial biofilms-a systematic review. 细菌生物膜的分子成像--系统综述。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-11-01 Epub Date: 2023-07-15 DOI: 10.1080/1040841X.2023.2223704
S W G van Hoogstraten, C Kuik, J J C Arts, B Cillero-Pastor
{"title":"Molecular imaging of bacterial biofilms-a systematic review.","authors":"S W G van Hoogstraten, C Kuik, J J C Arts, B Cillero-Pastor","doi":"10.1080/1040841X.2023.2223704","DOIUrl":"10.1080/1040841X.2023.2223704","url":null,"abstract":"<p><p>The formation of bacterial biofilms in the human body and on medical devices is a serious human health concern. Infections related to bacterial biofilms are often chronic and difficult to treat. Detailed information on biofilm formation and composition over time is essential for a fundamental understanding of the underlying mechanisms of biofilm formation and its response to anti-biofilm therapy. However, information on the chemical composition, structural components of biofilms, and molecular interactions regarding metabolism- and communication pathways within the biofilm, such as uptake of administered drugs or inter-bacteria communication, remains elusive. Imaging these molecules and their distribution in the biofilm increases insight into biofilm development, growth, and response to environmental factors or drugs. This systematic review provides an overview of molecular imaging techniques used for bacterial biofilm imaging. The techniques included mass spectrometry-based techniques, fluorescence-labelling techniques, spectroscopic techniques, nuclear magnetic resonance spectroscopy (NMR), micro-computed tomography (µCT), and several multimodal approaches. Many molecules were imaged, such as proteins, lipids, metabolites, and quorum-sensing (QS) molecules, which are crucial in intercellular communication pathways. Advantages and disadvantages of each technique, including multimodal approaches, to study molecular processes in bacterial biofilms are discussed, and recommendations on which technique best suits specific research aims are provided.</p>","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"971-992"},"PeriodicalIF":6.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523921/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10137108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction. 更正。
IF 6 2区 生物学
Critical Reviews in Microbiology Pub Date : 2024-11-01 Epub Date: 2024-03-20 DOI: 10.1080/1040841X.2024.2329036
{"title":"Correction.","authors":"","doi":"10.1080/1040841X.2024.2329036","DOIUrl":"10.1080/1040841X.2024.2329036","url":null,"abstract":"","PeriodicalId":10736,"journal":{"name":"Critical Reviews in Microbiology","volume":" ","pages":"1093"},"PeriodicalIF":6.0,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140174055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信