{"title":"Reinforcement Learning-Empowered Graph Convolutional Network Framework for Data Integrity Attack Detection in Cyber-Physical Systems","authors":"Edeh Vincent;Mehdi Korki;Mehdi Seyedmahmoudian;Alex Stojcevski;Saad Mekhilef","doi":"10.17775/CSEEJPES.2023.01250","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.01250","url":null,"abstract":"The massive integration of communication and information technology with the large-scale power grid has enhanced the efficiency, safety, and economical operation of cyber-physical systems. However, the open and diversified communication environment of the smart grid is exposed to cyber-attacks. Data integrity attacks that can bypass conventional security techniques have been considered critical threats to the operation of the grid. Current detection techniques cannot learn the dynamic and heterogeneous characteristics of the smart grid and are unable to deal with non-euclidean data types. To address the issue, we propose a novel Deep-Q-Network scheme empowered with a graph convolutional network (GCN) framework to detect data integrity attacks in cyber-physical systems. The simulation results show that the proposed framework is scalable and achieves higher detection accuracy, unlike other benchmark techniques.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"797-806"},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436596","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Xu;Zhonghao He;Siyang Liao;Yuanzhang Sun;Liangzhong Yao;Deping Ke;Jun Yang
{"title":"Detection Method for Cascading Failure of Power Systems Based on Epidemic Model","authors":"Jian Xu;Zhonghao He;Siyang Liao;Yuanzhang Sun;Liangzhong Yao;Deping Ke;Jun Yang","doi":"10.17775/CSEEJPES.2022.07410","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.07410","url":null,"abstract":"The early detection of cascading failure plays an important role in the safe and stable operation of the power system with high penetration of renewable energy. This paper proposes a fault propagation dynamic model based on the epidemic model, and further puts forward a method to detect the development of cascading failures. Through the simulation of the IEEE 39-bus and 118-bus systems, this model is proven to be valid and capable of providing practical technical support for the prevention of cascading failures in power systems with high penetration of renewable energy. This paper also provides an analysis method for the choice of different protection and control measures at each stage of cascading failure, which has critical significance and follow-up value.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1356-1370"},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436607","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304080","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhigang Li;Wenjian Zheng;Junbo Zhao;J. H. Zheng;Q. H. Wu
{"title":"Observability Analysis of Integrated Electricity and Heating Systems with Thermal Quasi-Dynamics in Pipelines","authors":"Zhigang Li;Wenjian Zheng;Junbo Zhao;J. H. Zheng;Q. H. Wu","doi":"10.17775/CSEEJPES.2022.04860","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.04860","url":null,"abstract":"Observability analysis (OA) is vital to obtaining the available input measurements of state estimation (SE) in an integrated electricity and heating system (IEHS). Considering the thermal quasi-dynamics in pipelines, the measurement equations in heating systems are dependent on the estimated results, leading to an interdependency between OA and SE. Conventional OA methods require measurement equations be known exactly before SE is performed, and they are not applicable to IEHSs. To bridge this gap, a scenario-based OA scheme for IEHSs is devised that yields reliable analysis results for a predefined set of time-delay scenarios to cope with this interdependency. As its core procedure, the observable state identification and observability restoration are formulated in terms of integer linear programming. Numerical tests are conducted to demonstrate the validity and superiority of the proposed formulation.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1145-1158"},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436601","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiachen Liu;Zhongguan Wang;Xiaodi Zang;Xialin Li;Li Guo;Qinglin Meng;Chengshan Wang
{"title":"Data-Driven Dynamic Assessment of Wind Farm Frequency Characteristics Based on State Space Mapping","authors":"Jiachen Liu;Zhongguan Wang;Xiaodi Zang;Xialin Li;Li Guo;Qinglin Meng;Chengshan Wang","doi":"10.17775/CSEEJPES.2023.02430","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.02430","url":null,"abstract":"With the integration of large-scale wind turbines (WTs) into grids via electronic interfaces, power systems are suffering from increasingly serious frequency stability risks. Due to the large number of WTs and their complex dynamic characteristics, operators encounter challenges in coordinating single WTs to provide frequency support directly, and it is necessary to assess the primacy frequency regulation (PFR) capability of wind farms. To cope with the problems of solving complexity and incomplete parameters, a data-driven state space mappingbased linear model for wind farms is developed in this paper to assess the maximum PFR capability. With Koopman operator theory (KOT), the proposed method transforms wind farm PFR nonlinear dynamics into a linear lift-dimension algebraic model, which can assess the maximum PFR capability of wind farms based on historical data in real-time. The simulation results demonstrate that the proposed method has the advantages of fast solving, independence on model parameters, and lower training data requirements.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 3","pages":"1018-1029"},"PeriodicalIF":6.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436612","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Overcurrent Mechanism and Suppression Control for MMC Arms in Hybrid Cascaded HVDC System","authors":"Nan Zhang;Xiaodong Li;Zheren Zhang;Zheng Xu","doi":"10.17775/CSEEJPES.2022.00460","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.00460","url":null,"abstract":"The hybrid cascaded HVDC system employs a line commutated converter (LCC) as the rectifier and an LCC in series with multiple paralleled modular multilevel converters (MMCs) as the inverter. MMC arms are susceptible to overcurrent following a severe AC fault at the receiving end, however, its fundamental mechanism has not been totally revealed. Therefore, this article explores the overcurrent characteristics on MMC arms, in terms of both the DC and AC components. Apart from the DC overcurrent component induced by the commutation failure (CF) of the inverter LCC, the AC overcurrent component is also significant. It dramatically depends on the coupling effects among the AC systems of the inverter side. Further, corresponding suppression strategies are proposed, which are applicable to different receiving-end AC fault scenarios. Eventually, the time-domain simulation results from PSCAD/EMTDC validate the effectiveness of the proposed overcurrent suppression control. It is also demonstrated that the presented methods can not only suppress overcurrent for MMC arms, but also reduce the imbalanced power between two sides, as well as improve the dynamic performances of the entire system.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"306-317"},"PeriodicalIF":6.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436594","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammad Dolatabadi;Alireza Zakariazadeh;Alberto Borghetti;Pierluigi Siano
{"title":"Distributed Energy and Reserve Scheduling in Local Energy Communities Using L-BFGS Optimization","authors":"Mohammad Dolatabadi;Alireza Zakariazadeh;Alberto Borghetti;Pierluigi Siano","doi":"10.17775/CSEEJPES.2023.06270","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.06270","url":null,"abstract":"Encouraging citizens to invest in small-scale renewable resources is crucial for transitioning towards a sustainable and clean energy system. Local energy communities (LECs) are expected to play a vital role in this context. However, energy scheduling in LECs presents various challenges, including the preservation of customer privacy, adherence to distribution network constraints, and the management of computational burdens. This paper introduces a novel approach for energy scheduling in renewable-based LECs using a decentralized optimization method. The proposed approach uses the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method, significantly reducing the computational effort required for solving the mixed integer programming (MIP) problem. It incorporates network constraints, evaluates energy losses, and enables community participants to provide ancillary services like a regulation reserve to the grid utility. To assess its robustness and efficiency, the proposed approach is tested on an 84-bus radial distribution network. Results indicate that the proposed distributed approach not only matches the accuracy of the corresponding centralized model but also exhibits scalability and preserves participant privacy.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"942-952"},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436620","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mixed-Integer Linear Programming Based Distribution Network Reconfiguration Model Considering Reliability Enhancement","authors":"Junpeng Zhu;Yi Zhou;Xiaofeng Dong;Li Zhou;Qiong Zhu;Yue Yuan","doi":"10.17775/CSEEJPES.2023.00150","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.00150","url":null,"abstract":"With the reform of the power system further deepening, the reliance on electricity and importance attached to the reliable power supply are increasing year by year, and the establishment of a high resilient power system has considerable economic, environmental and social benefits. Reconfiguring the network is one of the well-known tactics to enhance reliability. Accordingly, this paper proposes a reconfiguration method of distribution network considering the enhancement of reliability, which reconfigures the network structure both under normal operation conditions and outage scenarios, and considers factors such as power loss, load distribution and voltage quality considered in conventional reconfiguration methods. In this paper, the reliability assessment is integrated into the process of distribution network reconfiguration by using binary variables to represent the operating state of switchable devices. Based on the concept of fictitious fault flows, the reliability indices of distribution network are linearized expressed, and the network loss is reduced by minimizing the voltage deviation. A mixed integer linear programming (MILP) model is established for distribution network reconfiguration problem, which can guarantee the global optimal solution with high solution efficiency. Finally, the applicability and effectiveness of the proposed method are verified by numerical tests on a 54-node test system.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 3","pages":"1336-1346"},"PeriodicalIF":6.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436610","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144243681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Wang;Yanxin Liu;Mingdong Wang;Venkata Dinavahi;Jun Liang;Yonghui Sun
{"title":"Resilient Smart Power Grid Synchronization Estimation Method for System Resilience with Partial Missing Measurements","authors":"Yi Wang;Yanxin Liu;Mingdong Wang;Venkata Dinavahi;Jun Liang;Yonghui Sun","doi":"10.17775/CSEEJPES.2023.06900","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.06900","url":null,"abstract":"With the increasing demand for power system stability and resilience, effective real-time tracking plays a crucial role in smart grid synchronization. However, most studies have focused on measurement noise, while they seldom think about the problem of measurement data loss in smart power grid synchronization. To solve this problem, a resilient fault-tolerant extended Kalman filter (RFTEKF) is proposed to track voltage amplitude, voltage phase angle and frequency dynamically. First, a three-phase unbalanced network's positive sequence fast estimation model is established. Then, the loss phenomenon of measurements occurs randomly, and the randomness of data loss's randomness is defined by discrete interval distribution [0], [1]. Subsequently, a resilient fault-tolerant extended Kalman filter based on the real-time estimation framework is designed using the time-stamp technique to acquire partial data loss information. Finally, extensive simulation results manifest the proposed RFTEKF can synchronize the smart grid more effectively than the traditional extended Kalman filter (EKF).","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1307-1319"},"PeriodicalIF":7.1,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436622","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Sensor with Wide Range and High Sensitivity for Internal Magnetic Field Detection of Transformer","authors":"Meng Huang;Wei Zheng;Tong Ji;Mao Ji;Tianjiao Pu;Bo Qi","doi":"10.17775/CSEEJPES.2022.07270","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.07270","url":null,"abstract":"The deterioration of winding defects is one of the important causes of power transformer fires and even explosion failures. The change of leakage magnetic field distribution is the most direct response to winding defects. Currently there are few sensors suitable for online measurement of the internal magnetic field of transformers. Based on the Faraday magneto-optical effect, a magnetic field sensor with wide range and high sensitivity is proposed in this paper, which is suitable for the interior use of transformers. The straight-through optical structure with interior polarizer is adopted, and the sensor has a measurement range of 1.5 T and a sensitivity of 1 mT. It also possesses a small size, with a length of about 30 mm after encapsulation. The influence mechanism of vibration and temperature is revealed through theoretical analysis and numerical simulation. It is proposed to filter out the interference of vibration by characteristic frequency analysis and to compensate for temperature by a two-probe structure. An anti-interference test verifies the effectiveness of this method, and it can reduce the error from 80.56% to 2.63% under the combined interference of vibration and temperature.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 5","pages":"2230-2244"},"PeriodicalIF":6.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436606","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Self-Sustaining of Critical Park Microgrids Integrating Mobile Emergency Generators Subjective to Major Outage","authors":"Quan Sui;Lei Zhang","doi":"10.17775/CSEEJPES.2023.01670","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.01670","url":null,"abstract":"In the event of a major power outage, critical park microgrids (PMGs) could be self-sustaining if mobile emergency generators (MEGs) are stationed to share energy. However, the need for privacy protection and the value of flexible power support on minute-time scales have not been given enough attention. To address the problem, this paper proposes a new self-sustaining strategy for critical PMGs integrating MEGs. First, to promote the cooperation between PMG and MEG, a bi-level benefit distribution mechanism is designed, where the participants' multiple roles and contributions are identified, and good behaviors are also awarded. Additionally, to increase the alliance benefits, three loss coordination modes are presented to guide the power exchange at the minute level between the MEG and PMG, considering the volatility of renewable generation and load. On this basis, a multi-time scale power-energy scheduling strategy is formulated via the alternating direction method of multipliers (ADMM) to coordinate the PMG and MEG. Finally, a dimensionality reduction technology is designed to equivalently simplify the optimization problem to facilitate the adaptive-step-based ADMM solution. Simulation studies indicate that the proposed strategy achieves the self-sustaining of PMGs integrating MEGs while increasing the economy by no less than 3.1%.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 4","pages":"1441-1453"},"PeriodicalIF":6.9,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10436592","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}