Yiwei Qiu;Jin Lin;Zhipeng Zhou;Ningyi Dai;Feng Liu;Yonghua Song
{"title":"Achieving an Accurate Random Process Model for PV Power Using Cheap Data: Leveraging the SDE and Public Weather Reports","authors":"Yiwei Qiu;Jin Lin;Zhipeng Zhou;Ningyi Dai;Feng Liu;Yonghua Song","doi":"10.17775/CSEEJPES.2021.09640","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.09640","url":null,"abstract":"Stochastic differential equation (SDE)-based random process models of renewable energy sources (RESs) jointly capture evolving probability distribution and temporal correlation in continuous time. It enabled recent studies to remarkably improve performance of power system dynamic uncertainty quantification and optimization. However, considering the non-homogeneous random process nature of PV, there still remains a challenging question: how can a realistic and accurate daily SDE model for PV power be obtained that reflects its weather-dependent and non-Gaussian uncertainty in operation, especially when high-resolution numerical weather prediction (NWP) or sky imager is unavailable for many distributed plants? To fill this gap, this article finds that an accurate SDE model for PV power can be constructed only using the data from low-resolution public weather reports. Specifically, for each day, an hourly parameterized Jacobi diffusion process recreates temporal patterns of PV volatility. Its parameters are mapped from the day's public weather reports to reflect varying weather conditions using a simple learning model. The SDE model jointly captures intraday and intrahour volatility. Statistical examination shows that the proposed approach outperforms a selection of the latest deep learning-based time series models on real-world data collected in Macau.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"124-135"},"PeriodicalIF":6.9,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375973","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143430405","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Efficient Method to Estimate Admittance of Black-boxed Inverter-based Resources for Varying Operating Points","authors":"Weihua Zhou;Bin Liu;Nabil Mohammed;Behrooz Bahrani","doi":"10.17775/CSEEJPES.2023.07090","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.07090","url":null,"abstract":"Traditional analytical approaches for stability assessment of inverter-based resources (IBRs), often requiring detailed knowledge of IBR internals, become impractical due to IBRs' proprietary nature. Admittance measurements, relying on electromagnetic transient simulation or laboratory settings, are not only time-intensive but also operationally inflexible, since various non-linear control loops make IBRs' admittance models operating-point dependent. Therefore, such admittance measurements must be performed repeatedly when operating point changes. To avoid time-consuming and cumbersome measurements, admittance estimation for arbitrary operating points is highly desirable. However, existing admittance estimation algorithms usually face challenges in versatility, data demands, and accuracy. Addressing this challenge, this letter presents a simple and efficient admittance estimation method for black-boxed IBRs, by utilizing a minimal set of seven operating points to solve a homogeneous linear equation system. Case studies demonstrate this proposed method ensures high accuracy across various types of IBRs. Estimation accuracy is satisfying even when non-negligible measurement errors exist.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"421-426"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DG Hosting Capacity Assessment Considering Dependence Among Wind Speed, Solar Radiation, and Load Demands","authors":"Junyi Yang;Jiangmin Bao;Yuhan Hou;Han Wu;Qiang Li;Yue Yuan","doi":"10.17775/CSEEJPES.2021.07270","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.07270","url":null,"abstract":"Dependence of distributed generation (DG) outputs and load plays an essential role in renewable energy accommodation. This paper presents a novel DG hosting capacity (DGHC) evaluation method for distribution networks considering high-dimensional dependence relations among solar radiation, wind speed, and various load types (i.e., commercial, residential, and industrial). First, an advanced dependence modeling method called regular vine (R-vine) is applied to capture the complex dependence structure of solar radiation, wind speed, commercial loads, industrial loads, and residential loads. Then, a chance-constrained DGHC evaluation model is employed to figure out maximum hosting capacity of each DG and its optimal allocation plan with different operational risks. Finally, a Benders decomposition algorithm is also employed to reduce computational burden. The proposed approaches are validated using a set of historical data from China. Results show dependence among different DGs and loads has significant impact on hosting capacity. Results also suggest using the R-vine model to capture dependence among distributed energy resources (DERs) and load. This finding provides useful advice for distribution networks in installing renewable energy generations.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1011-1025"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375978","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian Hao;Jingwen Zhang;Wenyu Ye;Ruijing Liao;Lijun Yang
{"title":"Development of Mixed Insulation Oil as Alternative Liquid Dielectric: A Review","authors":"Jian Hao;Jingwen Zhang;Wenyu Ye;Ruijing Liao;Lijun Yang","doi":"10.17775/CSEEJPES.2023.05960","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.05960","url":null,"abstract":"Use of traditional mineral oil (MO) as a liquid insulation in transformers has spanned more than 130 years. However, MO has poor heat resistance, a low ignition point, and is a non-renewable resource, which does not meet development requirements for high-performance and environmentally friendly insulation oil. Consequently, researchers have explored alternatives such as natural ester (NE) and synthetic ester (SE) oils, as well as mixed insulation oils. Mixed insulating oil is a blend of diverse insulating oil types, with optimal performance achieved by adjusting proportions of base oils. This article summarizes the innovative achievements and development of mixed insulation oil in terms of development of mixed ratio, basic physical chemical properties, electrical properties, thermal stability, and application including operation and maintenance technology. Through these efforts, this article aims to provide recommendations for future development of mixed insulating oils to advance liquid dielectric research based on enhancement mechanisms.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 3","pages":"1242-1258"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10375972","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141304110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Communication Resources Allocation for Time Delay Reduction of Frequency Regulation Service in High Renewable Penetrated Power System","authors":"Hongjie He;Ning Zhang;Chongqing Kang;Song Ci;Fei Teng;Goran Strbac","doi":"10.17775/CSEEJPES.2023.07630","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.07630","url":null,"abstract":"The high renewable penetrated power system has severe frequency regulation problems. Distributed resources can provide frequency regulation services but are limited by communication time delay. This paper proposes a communication resources allocation model to reduce communication time delay in frequency regulation service. Communication device resources and wireless spectrum resources are allocated to distributed resources when they participate in frequency regulation. We reveal impact of communication resources allocation on time delay reduction and frequency regulation performance. Besides, we study communication resources allocation solution in high renewable energy penetrated power systems. We provide a case study based on the HRP-38 system. Results show communication time delay decreases distributed resources' ability to provide frequency regulation service. On the other hand, allocating more communication resources to distributed resources' communication services improves their frequency regulation performance. For power systems with renewable energy penetration above 70%, required communications resources are about five times as many as 30% renewable energy penetrated power systems to keep frequency performance the same.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"468-480"},"PeriodicalIF":7.1,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10376006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extension of Distribution Transformer Life in the Presence of Smart Inverter-based Distributed Solar Photovoltaic Systems","authors":"Kanhaiya Kumar;Saran Satsangi;Ganesh Balu Kumbhar","doi":"10.17775/CSEEJPES.2022.06060","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.06060","url":null,"abstract":"A transformer is an essential but expensive power delivery equipment for a distribution utility. In many distribution utilities worldwide, a sizable percentage of transformers are near the end of their designed life. At the same time, distribution utilities are adopting smart inverter-based distributed solar photovoltaic (SPV) systems to maximize renewable generation. The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers. The proposed method is first tested on a modified IEEE-123 node distribution feeder. After that, the procedure is applied to a practical distribution system, i.e., the Indian Institute of Technology (IIT) Roorkee campus, India. The transformer aging models, alongside advanced control functionalities of grid-tied smart inverter-based SPV systems, are implemented in MATLAB. The open-source simulation tool (OpenDSS) is used to model distribution net-works. To analyze effectiveness of various inverter functionalities, time-series simulations are performed using exponential load models, considering daily load curves from multiple seasons, load types, current harmonics, etc. Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer. Simulation results demonstrate, simply by incorporating smart inverter-based SPV systems, transformer aging is reduced by 15% to 22% in comparison to SPV systems operating with traditional inverters.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"88-95"},"PeriodicalIF":7.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322702","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139694987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Location of Asymmetric Ground Fault Using Virtual Injected Current Ratio and Two-stage Recovery Strategy in Distribution Networks","authors":"Haiting Shan;Luliang Zhang;Q. H. Wu;Mengshi Li","doi":"10.17775/CSEEJPES.2021.07900","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2021.07900","url":null,"abstract":"Sparse measurements challenge fault location in distribution networks. This paper proposes a method for asymmetric ground fault location in distribution networks with limited measurements. A virtual injected current vector is formulated to estimate the fault line, which can be reconstructed from voltage sags measured at a few buses using compressive sensing (CS). The relationship between the virtual injected current ratio (VICR) and fault position is deduced from circuit analysis to pinpoint the fault. Furthermore, a two-stage recovery strategy is proposed for improving reconstruction accuracy of the current vector, where two different sensing matrixes are utilized to improve the incoherence. The proposed method is validated in IEEE 34 node test feeder. Simulation results show asymmetric ground fault type, resistance, fault position and access of distributed generators (DGs) do not significantly influence performance of our method. In addition, it works effectively under various scenarios of noisy measurement and line parameter error. Validations on 134 node test feeders prove the proposed method is also suitable for systems with more complex structure.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 1","pages":"151-161"},"PeriodicalIF":7.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322703","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139695105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Hybrid Signal Processing Method Combining Mathematical Morphology and Walsh Theory for Power Quality Disturbance Detection and Classification","authors":"Zhi Ding;Tianyao Ji;Mengshi Li;Q. H. Wu","doi":"10.17775/CSEEJPES.2022.04430","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.04430","url":null,"abstract":"In this paper, a novel signal processing method combining mathematical morphology (MM) and Walsh theory is proposed, which uses Walsh functions to control the structuring element (SE) and MM operators. Based on the Walsh-MM method, a scheme for power quality disturbances detection and classification is developed, which involves three steps: denoising, feature extraction and morphological clustering. First, various evolution rules of Walsh function are used to generate groups of SEs for the multiscale Walsh-ordered morphological operation, so the original signal can be denoised. Next, the fundamental wave of the denoised signal is suppressed by Hadamard matrix; thus, disturbances can be extracted. Finally, the Walsh power spectrum of the waveform extracted in the previous step is calculated, and the parameters of which are taken by morphological clustering to classify the disturbances. Simulation results reveal the proposed scheme can effectively detect and classify disturbances, and the Walsh-MM method is less affected by noise and only involves simple calculation, which has a potential to be implemented in hardware and more suitable for real-time application.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 2","pages":"584-592"},"PeriodicalIF":7.1,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322711","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design Considerations on Voltage and Current Transfer Ratio of High-Frequency Transformers","authors":"Chen Liu;Lei Qi;Xiang Cui","doi":"10.17775/CSEEJPES.2022.00910","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2022.00910","url":null,"abstract":"A high frequency (HF) transformer is key equipment for dc-dc converter to achieve galvanic isolation and voltage transformation. As operating frequency increases, voltage and current transfer ratio of HF transformer may significantly deviate from the turn ratio due to parasitic effects, failing to transfer expected voltage and current from the primary side to the secondary side. In this paper, design considerations on voltage and current transfer ratio of the HF transformer are investigated to obtain expected transfer performance. By revealing parasitic effects on transfer characteristic (TC) of the HF transformer with load, deviation between voltage/current transfer ratio and turn ratio is correlated with the ratio of voltage/current TC resonant frequency and operating frequency. Accordingly, constraints for parasitic parameters to obtain expected transfer ratio are proposed, and practical measures to achieve improvements in transformer design are discussed. A 20kHz HF transformer prototype is used as an application, by which evaluations on deviation of voltage/current transfer ratio and turn ratio are verified, and voltage/current transfer performance of the prototype are effectively improved by optimal design based on the proposed principles.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"11 1","pages":"447-457"},"PeriodicalIF":6.9,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322706","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143403780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Junaid;Xiaolong Yu;Shuzhi Cao;Wenqing Yu;Dongsheng Zuo;Jianhua Wang
{"title":"Simulation Analysis of DC Fault Interruption Characteristics of Superconducting Electric Aircraft Propulsion","authors":"Muhammad Junaid;Xiaolong Yu;Shuzhi Cao;Wenqing Yu;Dongsheng Zuo;Jianhua Wang","doi":"10.17775/CSEEJPES.2023.03650","DOIUrl":"https://doi.org/10.17775/CSEEJPES.2023.03650","url":null,"abstract":"Environmental issues associated with the aviation industry are getting more attention as air traffic increases. Stringent standards are imposed for fuel consumption and pollution emissions for next-generation aircraft. Superconducting electrical propulsion aircraft (SEPA) have been seen as an efficient way to achieve this goal. High-temperature superconducting (HTS) devices are extensively used in the power system to supply enormous energy. Power is distributed to the different loads via a DC distribution network. However, it will generate an inrush current over ten times higher than the rated current in short-circuit state, which is very harmful to the system. Therefore, it is essential to adopt an appropriate protection scheme. This paper discusses one protection scheme that combines DC vacuum circuit breakers (DC VCB) and resistive superconducting current limiters (RSFCL) for superconducting aircraft applications. Considering problems of cost and loss, the auxiliary capacitor is pre-charged by system voltage, and mechanical elements extinguish the arc. Furthermore, combined with RSFCL, the interrupting environment is fully improved. RSFCL limits fault current, and then the VCB breaks this limited current based on creating an artificial current zero (ACZ). The prospective rated power is 8MW, rated voltage and current are 4 kV and 1 kA, respectively. In this paper, we discuss and simulate switching devices that protect SEPA. The interrupting performance of the circuit breaker is analysed in the DC short-circuit fault that occurs on the transmission line. Finally, the residual energy consumption of different situations is calculated. A comparison is made between using RSFCL with metal oxide varistor (MOV) and just using MOV. The scheme with RSFCL shows a significant advantage in energy consumption.","PeriodicalId":10729,"journal":{"name":"CSEE Journal of Power and Energy Systems","volume":"10 4","pages":"1834-1842"},"PeriodicalIF":6.9,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10322698","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141966285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}