{"title":"The nitriding treatment of ternary nanofibers toward outstanding electromagnetic wave absorption performance","authors":"","doi":"10.1016/j.compositesb.2024.111922","DOIUrl":"10.1016/j.compositesb.2024.111922","url":null,"abstract":"<div><div>Beneficial from the high electrical conductivity and remarkable chemical stability, transition metal nitrides have attracted widespread attention in the employment of electromagnetic wave absorption. Toward this end, Fe<sub>4</sub>N/zirconium dioxide/carbon nanofibers composited absorber was triumphantly prepared by the combination of electrospinning, carbonization, and subsequent nitridation. After undergoing the nitriding treatment, the emergency of Fe<sub>4</sub>N with superior electromagnetic properties, the introduction of more defects and functional groups, and the synergistic effect between each component would dramatically intensify multiple loss mechanisms, optimize the impedance matching, and improve the wave absorbing properties. Ultimately, the ternary fibrous nanocomposite realized the minimum reflection loss of −63.7 dB at 12.5 GHz with corresponding matching thickness of 2.2 mm, and an ultrabroad bandwidth up to 7.0 GHz. Therefore, this work substantiated the promising potential of Fe<sub>4</sub>N in the practical application of microwave absorption, and shed light on the exploitation of a new generation metal nitrides-based wave absorbents.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142539816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drug-free extracellular vesicles: A spatiotemporally controlled release engineering strategy for osteogenesis and anti-inflammatory niches in rotator cuff regeneration","authors":"","doi":"10.1016/j.compositesb.2024.111928","DOIUrl":"10.1016/j.compositesb.2024.111928","url":null,"abstract":"<div><div>Natural small-molecule drugs have promising potential to promote tissue regeneration in various fields. Therefore, maximizing drug efficiency while minimizing potential side effects is imperative. Peiminine, a natural product extracted from natural <em>Fritillaria</em>, is one of small-molecule drugs in the field of bone regeneration due to its good bone-promoting and anti-inflammatory abilities. However, its application is limited by a lack of biological activity, poor biocompatibility at high concentrations, and difficulty in achieving long-term slow-release and therapeutic effects. Extracellular vesicles (EVs) produced by preconditioned cells are considered to have special biological functions, and their potential to further retain, buffer, and transmit drug effects and expand the therapeutic effect has been widely studied. Thus, our study provides a drug-free bioengineering strategy by preconditioning bone marrow mesenchymal stem cells (BMSC) with Peiminine, then EVs, secreted as Peim-EVs, were extracted and combined with a decellularized extracellular matrix (dECM). The final EVs-dECM system with a spatiotemporally controlled release system was formed. <em>In vitro</em> studies demonstrated that Peim-EVs solved the problem of Peiminine biocompatibility and exhibited osteogenic and anti-inflammatory effects, which may be related to PI3K/AKT, MAPK/NF-κB, and Hippo signaling pathways. An <em>in vivo</em> model of rotator cuff injury in rats also showed that EVs-dECM had a good effect on rotator cuff repair. Combined with engineering strategy, this study provides verification and scenario expansion for drug application, especially for drug-free strategies that retain the biological effects of drugs, and has broad significance.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Damage mechanisms of SiC fibers and BN interphase in SiCf/SiC composites during NITE process","authors":"","doi":"10.1016/j.compositesb.2024.111923","DOIUrl":"10.1016/j.compositesb.2024.111923","url":null,"abstract":"<div><div>In this work, the mechanical behavior of NITE-SiC<sub>f</sub>/SiC composites, accompanied by the damage mechanisms of SiC fibers and BN interphase during NITE process, are investigated. The results show that the fracture characteristic of NITE-SiC<sub>f</sub>/SiC composite is transformed from quasi-ductile mode to brittle mode with the elevating temperature, as well as severe damage of SiC fiber and BN interphase. The damage of SiC fibers is originated from high temperature, sintering aids corrosion and matrix compression. High temperature and sintering aids diffusion lead to the grain growth and strength degradation of SiC fibers. The damage of BN interphase is caused by the sintering aids corrosion, mainly the reaction of Al<sub>2</sub>O<sub>3</sub>, and matrix compression. The stress distribution is simulated via finite element analysis proving that up to 17.5 GPa and 17.0 GPa stress originated from matrix shrinkage during sintering process is applied to the fiber and interphase respectively, making the fiber deformation and interphase fragmentation. The degraded fiber strength and destroyed interphase structure weaken the load-bearing capacity and crack deflection ability, causing degradation of mechanical properties and reliability of composites. This work helps to comprehensively understand and optimize the properties of SiC<sub>f</sub>/SiC composites prepared by NITE process.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unleashing the elastocaloric cooling potential of 3D-printed NiTi alloy with heterogeneous microstructures and Ni4Ti3 nanoparticles","authors":"","doi":"10.1016/j.compositesb.2024.111918","DOIUrl":"10.1016/j.compositesb.2024.111918","url":null,"abstract":"<div><div>Toward the development of elastocaloric (eC) refrigeration applications, this study examines how Ni<sub>4</sub>Ti<sub>3</sub> nanoparticles improve the eC properties of laser powder bed-fused (LPBF) NiTi alloys, with a focus on the formation of a NiTi/Ni<sub>4</sub>Ti<sub>3</sub> nanocomposite. The LPBF-produced microstructure offers significant advantages: <em>i</em>) a heterogeneous grain structure that provides complementary benefits—fine grains offer higher deformation resistance while coarse grains initiate phase transformation (PT) earlier, releasing more latent heat; <em>ii</em>) a strong <001>//building direction texture that enhances recoverability. However, these benefits are partially limited by grain boundary slip during PT, leading to lower cooling efficiency and increased energy dissipation in as-built NiTi alloys. To address these issues, Ni<sub>4</sub>Ti<sub>3</sub> nanoparticles are introduced through aging treatment, forming a composite structure that strengthens grain boundaries. Given the challenges of applying severe plastic deformation to 3D-printed components, this approach may offer a more practical solution. The study also reveals that Ni<sub>4</sub>Ti<sub>3</sub> nanoparticles contribute to: <em>1</em>) reducing Ni content in the matrix, increasing lattice size and enthalpy, which enhances the temperature drop (<em>ΔT</em><sub><em>ad</em></sub>); and <em>2</em>) promoting R phase formation, which hinders the B2↔B19’ PT, reducing energy dissipation and improving the coefficient of performance (<em>COP</em><sub><em>mat</em></sub>). The balance of these effects depends on nanoparticle size, with smaller particles (∼5–12 nm) amplifying the second effect, while larger particles (∼130 nm) increase the first effect. At 350 °C aging, the optimized nanocomposite exhibits a maximum <em>COP</em><sub><em>mat</em></sub> of 15 and <em>ΔT</em><sub><em>ad</em></sub> of 14K, representing a 163 % improvement over the as-built alloy. This work highlights the potential of NiTi composites in 3D-printed eC components.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature-controlled in-situ construction of composition-tunable nanoparticle-decorated SOFC cathodes with enhanced oxygen reduction kinetics and CO2 tolerance","authors":"","doi":"10.1016/j.compositesb.2024.111917","DOIUrl":"10.1016/j.compositesb.2024.111917","url":null,"abstract":"<div><div>High oxygen reduction reaction (ORR) catalytic activity and CO<sub>2</sub> resistance of the cathode are fundamental to the commercial application of solid oxide fuel cells (SOFCs). Therefore, we develop a temperature-driven reduction-reoxidation strategy to in-situ construct heterostructured perovskite cathodes decorated with different nanoparticles by controlling the reduction temperature. For (Pr<sub>0.4</sub>Sr<sub>0.6</sub>)<sub>0.95</sub>Co<sub>0.2</sub>Fe<sub>0.8-<em>x</em></sub>Ni<sub><em>x</em></sub>O<sub>3-<em>δ</em></sub> (PSCFN, <em>x</em> = 0.05, 0.1), reduction (@700 °C)-reoxidation results in the exsolution of a Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase on the perovskite scaffold surface, while reduction (@750 °C)-reoxidation leads to the formation of both Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase and NiO nanoparticles. The exsolution of these highly active species increases the quantity of oxygen reduction active sites and effectively suppresses Sr segregation. The simultaneous formation of Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase and NiO nanoparticles induces B-site ion vacancies in the main phase, therefore facilitates the formation of oxygen vacancies. Additionally, the presence of Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub>/NiO/PSCFN heterointerfaces promotes oxygen adsorption and transfer. The strong interactions among Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub>, NiO, and PSCFN significantly enhance the structural stability. At 800 °C, Reo2-PSCFN0.1 achieves an output performance of 1.12 W cm<sup>−2</sup>, representing a 36.6 % enhancement compared to PSCFN0.1. Moreover, the Rp of Reo2-PSCFN0.1 is merely 0.0186 Ω cm<sup>2</sup>, marking a 40.4 % decrease relative to PSCFN0.1. This temperature-driven reduction-reoxidation strategy shows great promise as a novel approach for creating high-performance IT-SOFC cathodes.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of admixed silicone emulsion on water and chloride transport properties of concrete","authors":"","doi":"10.1016/j.compositesb.2024.111916","DOIUrl":"10.1016/j.compositesb.2024.111916","url":null,"abstract":"<div><div>The addition of silicone is effective method for improving both surface and internal hydrophobicity of concrete, thus clarifying its effect on transport property of concrete is very important. In this study, both water and chloride transport properties of concrete incorporated with three silicone emulsions based on different active ingredients (silane oligomers or silane monomers) were evaluated and investigated. The results show that all three silicone emulsions exhibit no obvious negative effect on hydration and microstructure of cement paste; however, the admixed silicone emulsions increase both the thickness and porosity of ITZ in concrete. Therefore, the admixed silicone emulsions result in reduced compressive strength of concrete. Further, the incorporated silicone emulsions efficiently increase surface and internal water contact angle of concrete, thus mitigating both water absorption and chloride transport in concrete. Due to more pronounced interaction between silane oligomers and hydration products based on molecular dynamics simulation, the beneficial effect on improving hydrophobicity of concrete and halting water and chloride transport is more significant for the admixed silicone emulsion with silane oligomers as active ingredient.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multifunctional highly conductive cellulose nanopaper with ordered PEDOT:PSS alignment enabled by external surface area-promoted phase separation","authors":"","doi":"10.1016/j.compositesb.2024.111919","DOIUrl":"10.1016/j.compositesb.2024.111919","url":null,"abstract":"<div><div>Integrating cellulose, the most abundant biopolymer on Earth, with PEDOT:PSS, the most commercially available conducting polymer, can create multifunctional conductive nanopapers for sustainable electronics. However, conventional PEDOT:PSS/cellulose composites often exhibit limited conductivity, primarily due to the random distribution of PEDOT and the aggregation of PSS within the cellulose matrix. Herein, we introduce a confined phase separation approach that leverages the inherent physical characteristics of the cellulose substrate to enhance the performance of these composites. By systematically investigating the influence of the external surface area of nanocellulose on PEDOT:PSS coverage and composition evolution, we demonstrate that a higher external surface area ensures uniform PEDOT:PSS coating on nanocellulose networks and facilitates effective PSS removal during secondary doping. This process enhances phase separation and promotes ordered alignment of PEDOT chains along nanocellulose, resulting in an electrical conductivity of up to 252 S cm<sup>−1</sup>. Such highly conductive nanopapers exhibit exceptional performances in supercapacitors and electromagnetic shielding, achieving an ultrahigh specific electromagnetic shielding effectiveness of 33,122 dB cm<sup>2</sup> g⁻<sup>1</sup> at only 6 μm thickness. Our study highlights the critical role of cellulose substrate selection at the nanoscale and elucidates the interactions within conducting polymers, offering a promising pathway for developing high-performance, sustainable electronics.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142552746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exceptional strength-toughness-hardness integrated B4C ceramics with synergistic reinforcement of nano-BN and in-situ ceramic phases","authors":"","doi":"10.1016/j.compositesb.2024.111921","DOIUrl":"10.1016/j.compositesb.2024.111921","url":null,"abstract":"<div><div>Boron carbide (B<sub>4</sub>C) ceramics with enhanced mechanical properties were fabricated by incorporating nano boron nitride (nano-BN), obtained through high-energy ball milling (HEBM) using ZrO<sub>2</sub> balls as the medium, and utilizing the spark plasma sintering (SPS) technique. During the densification process of B<sub>4</sub>C/nano-BN composite powders, an <em>in-situ</em> reaction between the B<sub>4</sub>C matrix and ZrO<sub>2</sub> resulted in the formation of ZrB<sub>2</sub> ceramic phases at 1200–1300 °C. Additionally, the rapid sintering densification temperature of composites is reduced to 1500–1700 °C, approximately 80 °C lower than that required for pure B<sub>4</sub>C ceramics. Notably, while maintaining a high relative density (99.5 %), the Vickers hardness, flexural strength, and fracture toughness of B<sub>4</sub>C ceramics reinforced with synergistic effects of nano-BN and ZrB<sub>2</sub> fabricated at 1750 °C are significantly improved to reach values of 36.8 ± 0.15 GPa, 701 ± 12 MPa, and 5.01 ± 0.13 MPa m<sup>1/2</sup> respectively; representing an increase of 3.5 GPa (10.5 %), 225 MPa (47.3 %), and 1.72 MPa m<sup>1/2</sup> (52.3 %) compared to pure B<sub>4</sub>C ceramics alone. The multiple reinforcement mechanisms including pinning effects provided by nano-BN and <em>in-situ</em> formed ZrB<sub>2</sub> ceramic phases, B<sub>4</sub>C/ZrB<sub>2</sub> grain boundary pressure and intracrystalline pressure within B<sub>4</sub>C, interlayer dislocations of nano-BN and turbulent layer of B<sub>4</sub>C/BN boundaries contribute to energy dissipation during fracture processes, such as crack deflection, bridging, propagation hindrance and branching effect; ultimately resulting in exceptional strength-toughness-hardness integrated B<sub>4</sub>C-based ceramics.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Natural loofah sponge inspired 3D printed bionic scaffolds promote personalized bone defect regeneration","authors":"","doi":"10.1016/j.compositesb.2024.111920","DOIUrl":"10.1016/j.compositesb.2024.111920","url":null,"abstract":"<div><div>Critical-sized bone defects pose serious health concerns for patients. Clinically, the use of functionalized bone implants has emerged as an effective solution. However, the rapid advancement in drug and biomaterials has led to an increasing design cost, triggering discussions in the field about how to efficiently create customized functional bone implants. Inspired by the unique structure of natural loofah sponges that effectively deliver nutrients to seeds, we designed a functionalized bone implant emulating this structure. Drug-release gradients were achieved through the application of different concentrations of hydrogels within the composite scaffold. This approach allowed active substances to be released outwardly during the early stage of bone repair, sustaining a local drug micro-environment within the implant scaffold that promotes angiogenesis and osteogenic differentiation in damaged areas. In vivo experiments showed that our loofah sponge bionic scaffold outperformed traditional hydroxyapatite scaffolds by promoting both bone and vascular regeneration. We expect the design of loofah sponge bionic scaffold could potentially deliver an effective strategy in the development of functionalized bone implants.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142561465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimisation of a composite pressure vessel dome using non-geodesic tow paths and automated fibre placement manufacturing","authors":"","doi":"10.1016/j.compositesb.2024.111906","DOIUrl":"10.1016/j.compositesb.2024.111906","url":null,"abstract":"<div><div>Filament winding lacks the flexibility to produce composite pressure vessels with highly optimised thickness and fibre angles. Automated fibre placement can overcome this limitation using its selective material placement capability. In this work, two dome thickness optimisation strategies are introduced and evaluated for mass reduction and manufacturability. Additionally, fifteen non-geodesic fibre paths were examined using finite element analysis (FEA). The combined thickness and fibre angle optimised domes averaged a 48.94 % improvement in structural efficiency from the baseline. A demonstrator was manufactured, and thickness and fibre angle were measured with average differences of 3.45 % and 1.86 % from the simulations. Finally, hydrostatic pressure testing was performed to validate the FEA.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":null,"pages":null},"PeriodicalIF":12.7,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142530809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}