{"title":"Overcrowding and separation estimates for the Coulomb gas","authors":"Eric Thoma","doi":"10.1002/cpa.22188","DOIUrl":"10.1002/cpa.22188","url":null,"abstract":"<p>We prove several results for the Coulomb gas in any dimension <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>≥</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$d ge 2$</annotation>\u0000 </semantics></math> that follow from <i>isotropic averaging</i>, a transport method based on Newton's theorem. First, we prove a high-density Jancovici–Lebowitz–Manificat law, extending the microscopic density bounds of Armstrong and Serfaty and establishing strictly sub-Gaussian tails for charge excess in dimension 2. The existence of microscopic limiting point processes is proved at the edge of the droplet. Next, we prove optimal upper bounds on the <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>-point correlation function for merging points, including a Wegner estimate for the Coulomb gas for <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 <mo>=</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 <annotation>$k=1$</annotation>\u0000 </semantics></math>. We prove the tightness of the properly rescaled <span></span><math>\u0000 <semantics>\u0000 <mi>k</mi>\u0000 <annotation>$k$</annotation>\u0000 </semantics></math>th minimal particle gap, identifying the correct order in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>=</mo>\u0000 <mn>2</mn>\u0000 </mrow>\u0000 <annotation>$d=2$</annotation>\u0000 </semantics></math> and a three term expansion in <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>d</mi>\u0000 <mo>≥</mo>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$d ge 3$</annotation>\u0000 </semantics></math>, as well as upper and lower tail estimates. In particular, we extend the two-dimensional “perfect-freezing regime” identified by Ameur and Romero to higher dimensions. Finally, we give positive charge discrepancy bounds which are state of the art near the droplet boundary and prove incompressibility of Laughlin states in the fractional quantum Hall effect, starting at large microscopic scales. Using rigidity for fluctuations of smooth linear statistics, we show how to upgrade positive discrepancy bounds to estimates on the absolute discrepancy in certain regions.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 7","pages":"3227-3276"},"PeriodicalIF":3.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138481467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The anisotropic min-max theory: Existence of anisotropic minimal and CMC surfaces","authors":"Guido De Philippis, Antonio De Rosa","doi":"10.1002/cpa.22189","DOIUrl":"10.1002/cpa.22189","url":null,"abstract":"<p>We prove the existence of nontrivial closed surfaces with constant anisotropic mean curvature with respect to elliptic integrands in closed smooth <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$hskip.001pt 3$</annotation>\u0000 </semantics></math>–dimensional Riemannian manifolds. The constructed min-max surfaces are smooth with at most one singular point. The constant anisotropic mean curvature can be fixed to be any real number. In particular, we partially solve a conjecture of Allard in dimension <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 </mrow>\u0000 <annotation>$hskip.001pt 3$</annotation>\u0000 </semantics></math>.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 7","pages":"3184-3226"},"PeriodicalIF":3.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138473810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Infinite order phase transition in the slow bond TASEP","authors":"Sourav Sarkar, Allan Sly, Lingfu Zhang","doi":"10.1002/cpa.22185","DOIUrl":"10.1002/cpa.22185","url":null,"abstract":"<p>In the slow bond problem the rate of a single edge in the Totally Asymmetric Simple Exclusion Process (TASEP) is reduced from 1 to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>1</mn>\u0000 <mo>−</mo>\u0000 <mi>ε</mi>\u0000 </mrow>\u0000 <annotation>$1-varepsilon$</annotation>\u0000 </semantics></math> for some small <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ε</mi>\u0000 <mo>></mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$varepsilon &gt;0$</annotation>\u0000 </semantics></math>. Janowsky and Lebowitz posed the well-known question of whether such very small perturbations could affect the macroscopic current. Different groups of physicists, using a range of heuristics and numerical simulations reached opposing conclusions on whether the critical value of <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon$</annotation>\u0000 </semantics></math> is 0. This was ultimately resolved rigorously in Basu-Sidoravicius-Sly which established that <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>ε</mi>\u0000 <mi>c</mi>\u0000 </msub>\u0000 <mo>=</mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$varepsilon _c=0$</annotation>\u0000 </semantics></math>.</p><p>Here we study the effect of the current as <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon$</annotation>\u0000 </semantics></math> tends to 0 and in doing so explain why it was so challenging to predict on the basis of numerical simulations. In particular we show that the current has an infinite order phase transition at 0, with the effect of the perturbation tending to 0 faster than any polynomial. Our proof focuses on the Last Passage Percolation formulation of TASEP where a slow bond corresponds to reinforcing the diagonal. We give a multiscale analysis to show that when <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon$</annotation>\u0000 </semantics></math> is small the effect of reinforcement remains small compared to the difference between optimal and near optimal geodesics. Since geodesics can be perturbed on many different scales, we inductively bound the tails of the effect of reinforcement by controlling the number of near optimal geodesics and giving new tail estimates for the local time of (near) geodesics along the diagonal.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 6","pages":"3107-3140"},"PeriodicalIF":3.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138289375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Critical sets of solutions of elliptic equations in periodic homogenization","authors":"Fanghua Lin, Zhongwei Shen","doi":"10.1002/cpa.22186","DOIUrl":"10.1002/cpa.22186","url":null,"abstract":"<p>In this paper we study critical sets of solutions <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>u</mi>\u0000 <mi>ε</mi>\u0000 </msub>\u0000 <annotation>$u_varepsilon$</annotation>\u0000 </semantics></math> of second-order elliptic equations in divergence form with rapidly oscillating and periodic coefficients. Under some condition on the first-order correctors, we show that the <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mi>d</mi>\u0000 <mo>−</mo>\u0000 <mn>2</mn>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$(d-2)$</annotation>\u0000 </semantics></math>-dimensional Hausdorff measures of the critical sets are bounded uniformly with respect to the period <span></span><math>\u0000 <semantics>\u0000 <mi>ε</mi>\u0000 <annotation>$varepsilon$</annotation>\u0000 </semantics></math>, provided that doubling indices for solutions are bounded. The key step is an estimate of “turning” of an approximate tangent map, the projection of a non-constant solution <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>u</mi>\u0000 <mi>ε</mi>\u0000 </msub>\u0000 <annotation>$u_varepsilon$</annotation>\u0000 </semantics></math> onto the subspace of spherical harmonics of order <span></span><math>\u0000 <semantics>\u0000 <mi>ℓ</mi>\u0000 <annotation>$ell$</annotation>\u0000 </semantics></math>, when the doubling index for <span></span><math>\u0000 <semantics>\u0000 <msub>\u0000 <mi>u</mi>\u0000 <mi>ε</mi>\u0000 </msub>\u0000 <annotation>$u_varepsilon$</annotation>\u0000 </semantics></math> on a sphere <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>∂</mi>\u0000 <mi>B</mi>\u0000 <mo>(</mo>\u0000 <mn>0</mn>\u0000 <mo>,</mo>\u0000 <mi>r</mi>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 <annotation>$partial B(0, r)$</annotation>\u0000 </semantics></math> is trapped between <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 <mo>−</mo>\u0000 <mi>δ</mi>\u0000 </mrow>\u0000 <annotation>$ell -delta$</annotation>\u0000 </semantics></math> and <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ℓ</mi>\u0000 <mo>+</mo>\u0000 <mi>δ</mi>\u0000 </mrow>\u0000 <annotation>$ell +delta$</annotation>\u0000 </semantics></math>, for <span></span><math>\u0000 <semantics>\u0000 <mi>r</mi>\u0000 <annotation>$r$</annotation>\u0000 </semantics></math> between 1 ","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 7","pages":"3143-3183"},"PeriodicalIF":3.0,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138297138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subquadratic harmonic functions on Calabi-Yau manifolds with maximal volume growth","authors":"Shih-Kai Chiu","doi":"10.1002/cpa.22182","DOIUrl":"10.1002/cpa.22182","url":null,"abstract":"<p>On a complete Calabi-Yau manifold <span></span><math>\u0000 <semantics>\u0000 <mi>M</mi>\u0000 <annotation>$M$</annotation>\u0000 </semantics></math> with maximal volume growth, a harmonic function with subquadratic polynomial growth is the real part of a holomorphic function. This generalizes a result of Conlon-Hein. We prove this result by proving a Liouville-type theorem for harmonic 1-forms, which follows from a new local <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$L^2$</annotation>\u0000 </semantics></math> estimate of the exterior derivative.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 6","pages":"3080-3106"},"PeriodicalIF":3.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22182","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138289374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantitative homogenization of principal Dirichlet eigenvalue shape optimizers","authors":"William M. Feldman","doi":"10.1002/cpa.22184","DOIUrl":"10.1002/cpa.22184","url":null,"abstract":"<p>We apply new results on free boundary regularity to obtain a quantitative convergence rate for the shape optimizers of the first Dirichlet eigenvalue in periodic homogenization. We obtain a linear (with logarithmic factors) convergence rate for the optimizing eigenvalue. Large scale Lipschitz free boundary regularity of almost minimizers is used to apply the optimal <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>L</mi>\u0000 <mn>2</mn>\u0000 </msup>\u0000 <annotation>$L^2$</annotation>\u0000 </semantics></math> homogenization theory in Lipschitz domains of Kenig et al. A key idea, to deal with the hard constraint on the volume, is a combination of a large scale almost dilation invariance with a selection principle argument.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 6","pages":"3026-3079"},"PeriodicalIF":3.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92438972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global solutions of the compressible Euler-Poisson equations with large initial data of spherical symmetry","authors":"Gui-Qiang G. Chen, Lin He, Yong Wang, Difan Yuan","doi":"10.1002/cpa.22149","DOIUrl":"10.1002/cpa.22149","url":null,"abstract":"<p>We are concerned with a global existence theory for finite-energy solutions of the multidimensional Euler-Poisson equations for both compressible gaseous stars and plasmas with large initial data of spherical symmetry. One of the main challenges is the strengthening of waves as they move radially inward towards the origin, especially under the self-consistent gravitational field for gaseous stars. A fundamental unsolved problem is whether the density of the global solution forms a delta measure (i.e., concentration) at the origin. To solve this problem, we develop a new approach for the construction of approximate solutions as the solutions of an appropriately formulated free boundary problem for the compressible Navier-Stokes-Poisson equations with a carefully adapted class of degenerate density-dependent viscosity terms, so that a rigorous convergence proof of the approximate solutions to the corresponding global solution of the compressible Euler-Poisson equations with large initial data of spherical symmetry can be obtained. Even though the density may blow up near the origin at a certain time, it is proved that no delta measure (i.e., concentration) in space-time is formed in the vanishing viscosity limit for the finite-energy solutions of the compressible Euler-Poisson equations for both gaseous stars and plasmas in the physical regimes under consideration.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 6","pages":"2947-3025"},"PeriodicalIF":3.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22149","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92438987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A dynamical approach to the study of instability near Couette flow","authors":"Hui Li, Nader Masmoudi, Weiren Zhao","doi":"10.1002/cpa.22183","DOIUrl":"10.1002/cpa.22183","url":null,"abstract":"<p>In this paper, we obtain the optimal instability threshold of the Couette flow for Navier–Stokes equations with small viscosity <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>ν</mi>\u0000 <mo>></mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$nu &gt;0$</annotation>\u0000 </semantics></math>, when the perturbations are in the critical spaces <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msubsup>\u0000 <mi>H</mi>\u0000 <mi>x</mi>\u0000 <mn>1</mn>\u0000 </msubsup>\u0000 <msubsup>\u0000 <mi>L</mi>\u0000 <mi>y</mi>\u0000 <mn>2</mn>\u0000 </msubsup>\u0000 </mrow>\u0000 <annotation>$H^1_xL_y^2$</annotation>\u0000 </semantics></math>. More precisely, we introduce a new dynamical approach to prove the instability for some perturbation of size <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ν</mi>\u0000 <mrow>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 <mo>−</mo>\u0000 <msub>\u0000 <mi>δ</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 </mrow>\u0000 </msup>\u0000 <annotation>$nu ^{frac{1}{2}-delta _0}$</annotation>\u0000 </semantics></math> with any small <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>δ</mi>\u0000 <mn>0</mn>\u0000 </msub>\u0000 <mo>></mo>\u0000 <mn>0</mn>\u0000 </mrow>\u0000 <annotation>$delta _0&gt;0$</annotation>\u0000 </semantics></math>, which implies that <span></span><math>\u0000 <semantics>\u0000 <msup>\u0000 <mi>ν</mi>\u0000 <mfrac>\u0000 <mn>1</mn>\u0000 <mn>2</mn>\u0000 </mfrac>\u0000 </msup>\u0000 <annotation>$nu ^{frac{1}{2}}$</annotation>\u0000 </semantics></math> is the sharp stability threshold. In our method, we prove a transient exponential growth without referring to eigenvalue or pseudo-spectrum. As an application, for the linearized Euler equations around shear flows that are near the Couette flow, we provide a new tool to prove the existence of growing modes for the corresponding Rayleigh operator and give a precise location of the eigenvalues.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 6","pages":"2863-2946"},"PeriodicalIF":3.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72364860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The maximum of log-correlated Gaussian fields in random environment","authors":"Florian Schweiger, Ofer Zeitouni","doi":"10.1002/cpa.22181","DOIUrl":"10.1002/cpa.22181","url":null,"abstract":"<p>We study the distribution of the maximum of a large class of Gaussian fields indexed by a box <math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>V</mi>\u0000 <mi>N</mi>\u0000 </msub>\u0000 <mo>⊂</mo>\u0000 <msup>\u0000 <mi>Z</mi>\u0000 <mi>d</mi>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$V_Nsubset mathbb {Z}^d$</annotation>\u0000 </semantics></math> and possessing logarithmic correlations up to local defects that are sufficiently rare. Under appropriate assumptions that generalize those in Ding et al., we show that asymptotically, the centered maximum of the field has a randomly-shifted Gumbel distribution. We prove that the two dimensional Gaussian free field on a super-critical bond percolation cluster with <math>\u0000 <semantics>\u0000 <mi>p</mi>\u0000 <annotation>$p$</annotation>\u0000 </semantics></math> close enough to 1, as well as the Gaussian free field in i.i.d. bounded conductances, fall under the assumptions of our general theorem.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 5","pages":"2778-2859"},"PeriodicalIF":3.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22181","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71493322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Siva Athreya, Oleg Butkovsky, Khoa Lê, Leonid Mytnik
{"title":"Well-posedness of stochastic heat equation with distributional drift and skew stochastic heat equation","authors":"Siva Athreya, Oleg Butkovsky, Khoa Lê, Leonid Mytnik","doi":"10.1002/cpa.22157","DOIUrl":"10.1002/cpa.22157","url":null,"abstract":"<p>We study stochastic reaction–diffusion equation\u0000\u0000 </p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 5","pages":"2708-2777"},"PeriodicalIF":3.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71493321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}