Guillaume Bal, Jeremy Hoskins, Solomon Quinn, Manas Rachh
{"title":"Integral formulation of Klein–Gordon singular waveguides","authors":"Guillaume Bal, Jeremy Hoskins, Solomon Quinn, Manas Rachh","doi":"10.1002/cpa.22227","DOIUrl":null,"url":null,"abstract":"<p>We consider the analysis of singular waveguides separating insulating phases in two-space dimensions. The insulating domains are modeled by a massive Schrödinger equation and the singular waveguide by appropriate jump conditions along the one-dimensional interface separating the insulators. We present an integral formulation of the problem and analyze its mathematical properties. We also implement a fast multipole and sweeping-accelerated iterative algorithm for solving the integral equations, and demonstrate numerically the fast convergence of this method. Several numerical examples of solutions and scattering effects illustrate our theory.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 2","pages":"323-365"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22227","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22227","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the analysis of singular waveguides separating insulating phases in two-space dimensions. The insulating domains are modeled by a massive Schrödinger equation and the singular waveguide by appropriate jump conditions along the one-dimensional interface separating the insulators. We present an integral formulation of the problem and analyze its mathematical properties. We also implement a fast multipole and sweeping-accelerated iterative algorithm for solving the integral equations, and demonstrate numerically the fast convergence of this method. Several numerical examples of solutions and scattering effects illustrate our theory.