On the wave turbulence theory of 2D gravity waves, I: Deterministic energy estimates

IF 3.1 1区 数学 Q1 MATHEMATICS
Yu Deng, Alexandru D. Ionescu, Fabio Pusateri
{"title":"On the wave turbulence theory of 2D gravity waves, I: Deterministic energy estimates","authors":"Yu Deng,&nbsp;Alexandru D. Ionescu,&nbsp;Fabio Pusateri","doi":"10.1002/cpa.22224","DOIUrl":null,"url":null,"abstract":"<p>Our goal in this paper is to initiate the rigorous investigation of wave turbulence and derivation of wave kinetic equations (WKEs) for water waves models. This problem has received intense attention in recent years in the context of semilinear models, such as Schrödinger equations or multidimensional KdV-type equations. However, our situation here is different since the water waves equations are quasilinear and solutions cannot be constructed by iteration of the Duhamel formula due to unavoidable derivative loss. This is the first of two papers in which we design a new strategy to address this issue. We investigate solutions of the gravity water waves system in two dimensions. In the irrotational case, this system can be reduced to an evolution equation on the one-dimensional interface, which is a large torus <span></span><math>\n <semantics>\n <msub>\n <mi>T</mi>\n <mi>R</mi>\n </msub>\n <annotation>${\\mathbb {T}}_R$</annotation>\n </semantics></math> of size <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>≥</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$R\\ge 1$</annotation>\n </semantics></math>. Our first main result is a deterministic energy inequality, which provides control of (possibly large) Sobolev norms of solutions for long times, under the condition that a certain <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math>-type norm is small. This energy inequality is of “quintic” type: if the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^\\infty$</annotation>\n </semantics></math> norm is <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <mi>ε</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\varepsilon)$</annotation>\n </semantics></math>, then the increment of the high-order energies is controlled for times of the order <span></span><math>\n <semantics>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <annotation>$\\varepsilon ^{-3}$</annotation>\n </semantics></math>, consistent with the approximate quartic integrability of the system. In the second paper in this sequence, we will show how to use this energy estimate and a propagation of randomness argument to prove a probabilistic regularity result up to times of the order <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>${\\varepsilon }^{-3} R^{3/2-}$</annotation>\n </semantics></math>, in a suitable scaling regime relating <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mn>0</mn>\n </mrow>\n <annotation>${\\varepsilon }\\rightarrow 0$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>R</mi>\n <mo>→</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$R \\rightarrow \\infty$</annotation>\n </semantics></math>. For our second main result, we combine the quintic energy inequality with a bootstrap argument using a suitable <span></span><math>\n <semantics>\n <mi>Z</mi>\n <annotation>$Z$</annotation>\n </semantics></math>-norm of Strichartz-type to prove that deterministic solutions with Sobolev data of size <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>≪</mo>\n <mn>1</mn>\n </mrow>\n <annotation>${\\varepsilon }\\ll 1$</annotation>\n </semantics></math> are regular for times of the order <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <mi>min</mi>\n <mo>(</mo>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mn>3</mn>\n </mrow>\n </msup>\n <mo>,</mo>\n <msup>\n <mi>R</mi>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>4</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>${\\varepsilon }^{-3} \\min \\big ({\\varepsilon }^{-3}, R^{3/4} \\big)$</annotation>\n </semantics></math>. In particular, on the real line, solutions exist for times of order <span></span><math>\n <semantics>\n <mrow>\n <mi>O</mi>\n <mo>(</mo>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mn>6</mn>\n </mrow>\n </msup>\n <mo>)</mo>\n </mrow>\n <annotation>$O(\\varepsilon ^{-6})$</annotation>\n </semantics></math>. This improves substantially on all the earlier extended lifespan results for 2D gravity water waves with small Sobolev data.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 2","pages":"211-322"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22224","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22224","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our goal in this paper is to initiate the rigorous investigation of wave turbulence and derivation of wave kinetic equations (WKEs) for water waves models. This problem has received intense attention in recent years in the context of semilinear models, such as Schrödinger equations or multidimensional KdV-type equations. However, our situation here is different since the water waves equations are quasilinear and solutions cannot be constructed by iteration of the Duhamel formula due to unavoidable derivative loss. This is the first of two papers in which we design a new strategy to address this issue. We investigate solutions of the gravity water waves system in two dimensions. In the irrotational case, this system can be reduced to an evolution equation on the one-dimensional interface, which is a large torus T R ${\mathbb {T}}_R$ of size R 1 $R\ge 1$ . Our first main result is a deterministic energy inequality, which provides control of (possibly large) Sobolev norms of solutions for long times, under the condition that a certain L $L^\infty$ -type norm is small. This energy inequality is of “quintic” type: if the L $L^\infty$ norm is O ( ε ) $O(\varepsilon)$ , then the increment of the high-order energies is controlled for times of the order ε 3 $\varepsilon ^{-3}$ , consistent with the approximate quartic integrability of the system. In the second paper in this sequence, we will show how to use this energy estimate and a propagation of randomness argument to prove a probabilistic regularity result up to times of the order ε 3 R 3 / 2 ${\varepsilon }^{-3} R^{3/2-}$ , in a suitable scaling regime relating ε 0 ${\varepsilon }\rightarrow 0$ and R $R \rightarrow \infty$ . For our second main result, we combine the quintic energy inequality with a bootstrap argument using a suitable Z $Z$ -norm of Strichartz-type to prove that deterministic solutions with Sobolev data of size ε 1 ${\varepsilon }\ll 1$ are regular for times of the order ε 3 min ( ε 3 , R 3 / 4 ) ${\varepsilon }^{-3} \min \big ({\varepsilon }^{-3}, R^{3/4} \big)$ . In particular, on the real line, solutions exist for times of order O ( ε 6 ) $O(\varepsilon ^{-6})$ . This improves substantially on all the earlier extended lifespan results for 2D gravity water waves with small Sobolev data.

关于二维重力波的波湍流理论,I:确定性能量估计
我们在本文中的目标是启动对波浪湍流的严格研究,并推导出水波模型的波动力方程(WKEs)。近年来,在半线性模型(如薛定谔方程或多维 KdV 型方程)的背景下,这一问题受到了广泛关注。然而,我们这里的情况有所不同,因为水波方程是准线性方程,由于不可避免的导数损失,无法通过迭代杜哈梅尔公式求解。本文是两篇论文中的第一篇,我们在其中设计了一种新策略来解决这一问题。我们研究了二维重力水波系统的解。在非旋转情况下,该系统可简化为一维界面上的演化方程,一维界面是一个大小为 。我们的第一个主要结果是一个确定性能量不等式,它提供了对解的(可能很大的)Sobolev 准则的长时间控制,条件是某个 - 型准则很小。这种能量不等式属于 "五元 "类型:如果规范为 ,那么高阶能量的增量在阶次为 ,的时间内受到控制,这与系统的近似四元可整性是一致的。在本序列的第二篇论文中,我们将展示如何利用这一能量估计和随机性传播论证来证明一个概率正则性结果,在一个与 和 有关的合适的缩放机制中,直到 次。对于我们的第二个主要结果,我们将五元能量不等式与使用合适的斯特里查兹类型-规范的自举论证相结合,证明具有索波列夫数据大小的确定性解在阶次为 的时间内是正则的。特别是,在实线上,对于阶为 . 的时间,解是存在的。这大大改进了早先关于具有小索博列夫数据的二维重力水波的所有扩展寿命结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信