{"title":"三重结点问题的炸毁极限唯一性","authors":"Zhiyuan Geng","doi":"10.1002/cpa.22230","DOIUrl":null,"url":null,"abstract":"<p>We prove the uniqueness of <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>1</mn>\n </msup>\n <annotation>$L^1$</annotation>\n </semantics></math> blow-down limit at infinity for an entire minimizing solution <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>:</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>→</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$u:\\mathbb {R}^2\\rightarrow \\mathbb {R}^2$</annotation>\n </semantics></math> of a planar Allen–Cahn system with a triple-well potential. Consequently, <span></span><math>\n <semantics>\n <mi>u</mi>\n <annotation>$u$</annotation>\n </semantics></math> can be approximated by a triple junction map at infinity. The proof exploits a careful analysis of energy upper and lower bounds, ensuring that the diffuse interface remains within a small neighborhood of the approximated triple junction at all scales.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"78 2","pages":"500-534"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22230","citationCount":"0","resultStr":"{\"title\":\"Uniqueness of the blow-down limit for a triple junction problem\",\"authors\":\"Zhiyuan Geng\",\"doi\":\"10.1002/cpa.22230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove the uniqueness of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>L</mi>\\n <mn>1</mn>\\n </msup>\\n <annotation>$L^1$</annotation>\\n </semantics></math> blow-down limit at infinity for an entire minimizing solution <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>:</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>→</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$u:\\\\mathbb {R}^2\\\\rightarrow \\\\mathbb {R}^2$</annotation>\\n </semantics></math> of a planar Allen–Cahn system with a triple-well potential. Consequently, <span></span><math>\\n <semantics>\\n <mi>u</mi>\\n <annotation>$u$</annotation>\\n </semantics></math> can be approximated by a triple junction map at infinity. The proof exploits a careful analysis of energy upper and lower bounds, ensuring that the diffuse interface remains within a small neighborhood of the approximated triple junction at all scales.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"78 2\",\"pages\":\"500-534\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpa.22230\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22230\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22230","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uniqueness of the blow-down limit for a triple junction problem
We prove the uniqueness of blow-down limit at infinity for an entire minimizing solution of a planar Allen–Cahn system with a triple-well potential. Consequently, can be approximated by a triple junction map at infinity. The proof exploits a careful analysis of energy upper and lower bounds, ensuring that the diffuse interface remains within a small neighborhood of the approximated triple junction at all scales.