Communications Physics最新文献

筛选
英文 中文
Quantum switch instabilities with an open control 具有开放控制的量子开关不稳定性
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-19 DOI: 10.1038/s42005-024-01843-y
Otavio A. D. Molitor, André H. A. Malavazi, Roberto Dobal Baldijão, Alexandre C. Orthey Jr., Ismael L. Paiva, Pedro R. Dieguez
{"title":"Quantum switch instabilities with an open control","authors":"Otavio A. D. Molitor, André H. A. Malavazi, Roberto Dobal Baldijão, Alexandre C. Orthey Jr., Ismael L. Paiva, Pedro R. Dieguez","doi":"10.1038/s42005-024-01843-y","DOIUrl":"10.1038/s42005-024-01843-y","url":null,"abstract":"The superposition of causal orders shows promise in various quantum technologies. However, the fragility of quantum systems arising from environmental interactions, leading to dissipative behavior and irreversibility, demands a deeper understanding of the possible instabilities in the coherent control of causal orders. In this work, we employ a collisional model to investigate the impact of an open control system on the generation of interference between two causal orders. We present the environmental instabilities for the switch of two arbitrary quantum operations and examine the influence of environmental temperature on each potential outcome of control post-selection. Additionally, we explore how environmental instabilities affect protocol performance, including switching between mutually unbiased measurement observables and refrigeration powered by causal order superposition, providing insights into broader implications. Using the quantum switch—a process involving a controlled operation followed by post-selection of the control—a system of interest can evolve under an effective dynamics governed by a superposition of operation orders. This work investigates how environmental influences on the control impact the desired superposition of orders in realistic scenarios.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-11"},"PeriodicalIF":5.4,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01843-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time persistence of climate and carbon flux networks 气候和碳通量网络的时间持久性
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-16 DOI: 10.1038/s42005-024-01862-9
Ting Qing, Fan Wang, Qiuyue Li, Gaogao Dong, Lixin Tian, Shlomo Havlin
{"title":"Time persistence of climate and carbon flux networks","authors":"Ting Qing, Fan Wang, Qiuyue Li, Gaogao Dong, Lixin Tian, Shlomo Havlin","doi":"10.1038/s42005-024-01862-9","DOIUrl":"10.1038/s42005-024-01862-9","url":null,"abstract":"The persistence of the global climate system is critical for assuring the sustainability of the natural ecosystem. However, persistence at a network level has been rarely discussed. Here we develop a framework to analyze the time persistence of the yearly networks of climate and carbon flux, based on cross-correlations between sites, using daily data from China, the contiguous United States, and the Europe land region. Our framework for determining the persistence is based on analyzing the similarity between the network structures in different years. Our results reveal that the similarity of climate and carbon flux networks in different years are within the range of 0.57 ± 0.07, implying that the climate and carbon flux in the Earth’s climate system are generally persistent and in a steady state. We find a very small decay in similarity when the gap between years increases. Moreover, we find that the persistence of climate variables and carbon flux in the three regions decreases when considering only long range links. Analyzing the persistence and evolution of the climate and carbon flux networks, enhance our understanding of the spatial and temporal evolution of the global climate system. The persistence of the global climate system is essential for the sustainability of natural ecosystems. This work develops a framework, generate climate and carbon flux networks and finds that the similarity of the networks in different years is 0.57 ± 0.07, implying that the system is generally stable and that the similarity decay is very small when the year gap increases.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01862-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anderson transition and mobility edges on hyperbolic lattices with randomly connected boundaries 具有随机连接边界的双曲晶格上的安德森转换和流动边缘
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-15 DOI: 10.1038/s42005-024-01848-7
Tianyu Li, Yi Peng, Yucheng Wang, Haiping Hu
{"title":"Anderson transition and mobility edges on hyperbolic lattices with randomly connected boundaries","authors":"Tianyu Li, Yi Peng, Yucheng Wang, Haiping Hu","doi":"10.1038/s42005-024-01848-7","DOIUrl":"10.1038/s42005-024-01848-7","url":null,"abstract":"Hyperbolic lattices, formed by tessellating the hyperbolic plane with regular polygons, exhibit a diverse range of exotic physical phenomena beyond conventional Euclidean lattices. Here, we investigate the impact of disorder on hyperbolic lattices and reveal that the Anderson localization occurs at strong disorder strength, accompanied by the presence of mobility edges. Taking the hyperbolic {p, q} = {3, 8} and {p, q} = {4, 8} lattices as examples, we employ finite-size scaling of both spectral statistics and the inverse participation ratio to pinpoint the transition point and critical exponents. Our findings indicate that the transition points tend to increase with larger values of {p, q} or curvature. In the limiting case of {∞, q}, we further determine its Anderson transition using the cavity method, drawing parallels with the random regular graph. Our work lays the cornerstone for a comprehensive understanding of Anderson transition and mobility edges on hyperbolic lattices. Anderson localization is a paradigmatic topic of condensed matter physics used to explain the insulating behavior of materials. This paper investigates the effect of disorder in hyperbolic lattices and finds that Anderson localization occurs at strong disorder strength, accompanied by the presence of mobility edges.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01848-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiplexed quantum repeaters based on single-photon interference with mild stabilization 基于温和稳定的单光子干涉的复用量子中继器
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-15 DOI: 10.1038/s42005-024-01849-6
Daisuke Yoshida, Tomoyuki Horikiri
{"title":"Multiplexed quantum repeaters based on single-photon interference with mild stabilization","authors":"Daisuke Yoshida, Tomoyuki Horikiri","doi":"10.1038/s42005-024-01849-6","DOIUrl":"10.1038/s42005-024-01849-6","url":null,"abstract":"Quantum repeaters are pivotal in the physical layer of the quantum internet, and quantum repeaters capable of efficient entanglement distribution are necessary for its development. Quantum repeater schemes based on single-photon interference are promising because of their potential efficiency. However, schemes involving first-order interference with photon sources at distant nodes require stringent phase stability of the components, which pose challenges for long-distance implementation. In this paper, we present a quantum repeater scheme that leverages single-photon interference and reduces the difficulty of achieving phase stabilization. Additionally, under specific conditions, our scheme achieves a higher entanglement distribution rate between end nodes compared with the existing schemes. Thus, the proposed approach could lead to improved rates with technologies that are currently unavailable but possible in the future and will ultimately facilitate the development of multimode quantum repeaters. Single-photon interference based quantum repeater schemes are promising due to their potential efficiency. Here, the authors offer a theoretical quantum repeater scheme with reduced complexity of phase stabilization and scope for higher entanglement rates between the end nodes.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01849-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of coherence in many-body Quantum Reservoir Computing 相干性在多体量子存储计算中的作用
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-14 DOI: 10.1038/s42005-024-01859-4
Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini
{"title":"Role of coherence in many-body Quantum Reservoir Computing","authors":"Ana Palacios, Rodrigo Martínez-Peña, Miguel C. Soriano, Gian Luca Giorgi, Roberta Zambrini","doi":"10.1038/s42005-024-01859-4","DOIUrl":"10.1038/s42005-024-01859-4","url":null,"abstract":"Quantum Reservoir Computing (QRC) offers potential advantages over classical reservoir computing, including inherent processing of quantum inputs and a vast Hilbert space for state exploration. Yet, the relation between the performance of reservoirs based on complex and many-body quantum systems and non-classical state features is not established. Through an extensive analysis of QRC based on a transverse-field Ising model we show how different quantum effects, such as quantum coherence and correlations, contribute to improving the performance in temporal tasks, as measured by the Information Processing Capacity. Additionally, we critically assess the impact of finite measurement resources and noise on the reservoir’s dynamics in different regimes, quantifying the limited ability to exploit quantum effects for increasing damping and noise strengths. Our results reveal a monotonic relationship between reservoir performance and coherence, along with the importance of quantum effects in the ergodic regime. Quantum Reservoir Computing leverages the quantum properties of physical systems for solving temporal tasks. This study shows the importance of quantum effects, such as coherence and superposition, in the reservoir’s performance for different dynamical regimes, while considering the impact of finite measurements and noisy environments.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01859-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The influence of timescales and data injection schemes for reservoir computing using spin-VCSELs 利用自旋-VCSEL 进行储层计算时标和数据注入方案的影响
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-14 DOI: 10.1038/s42005-024-01858-5
Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge
{"title":"The influence of timescales and data injection schemes for reservoir computing using spin-VCSELs","authors":"Lukas Mühlnickel, Jonnel A. Jaurigue, Lina C. Jaurigue, Kathy Lüdge","doi":"10.1038/s42005-024-01858-5","DOIUrl":"10.1038/s42005-024-01858-5","url":null,"abstract":"Reservoir computing with photonic systems promises fast and energy efficient computations. Vertical emitting semiconductor lasers with two spin-polarized charge-carrier populations (spin-VCSEL), are good candidates for high-speed reservoir computing. With our work, we highlight the role of the internal dynamic coupling on the prediction performance. We present numerical evidence for the critical impact of different data injection schemes and internal timescales. A central finding is that the internal dynamics of all dynamical degrees of freedom can only be utilized if an appropriate perturbation via the input is chosen as data injection scheme. If the data is encoded via an optical phase difference, the internal spin-polarized carrier dynamics is not addressed but instead a faster data injection rate is possible. We find strong correlations of the prediction performance with the system response time and the underlying delay-induced bifurcation structure, which allows to transfer the results to other physical reservoir computing systems. The authors numerically investigate the reservoir computing performance of vertical emitting two-mode semiconductor lasers and show the crucial impact of dynamic coupling, injection schemes and system timescales. A central finding is that high dimensional internal dynamics can only be utilized if an appropriate perturbation via the input is chosen.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01858-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Light-enhanced nonlinear Hall effect 光增强非线性霍尔效应
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-13 DOI: 10.1038/s42005-024-01820-5
Fang Qin, Rui Chen, Ching Hua Lee
{"title":"Light-enhanced nonlinear Hall effect","authors":"Fang Qin, Rui Chen, Ching Hua Lee","doi":"10.1038/s42005-024-01820-5","DOIUrl":"10.1038/s42005-024-01820-5","url":null,"abstract":"The Hall response can be dramatically different from its quantized value in materials with broken inversion symmetry. This stems from the leading Hall contribution beyond the linear order, known as the Berry curvature dipole (BCD). While the BCD is in principle always present, it is typically very small outside of a narrow window close to a topological transition and is thus experimentally elusive without careful tuning of external fields, temperature, or impurities. We transcend this challenge by devising optical driving and quench protocols that enable practical and direct access to large BCD. Varying the amplitude of an incident circularly polarized laser drives a topological transition between normal and Chern insulator phases, and importantly allows the precise unlocking of nonlinear Hall currents comparable to or larger than the linear Hall contributions. This strong BCD engineering is even more versatile with our two-parameter quench protocol, as demonstrated in our experimental proposal. In this work, the authors investigate nonlinear Hall materials under optical driving. They find that nonlinear Hall materials can exhibit a strong light-enhanced nonlinear Hall response when excited by circularly polarized lasers.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-14"},"PeriodicalIF":5.4,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01820-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconductivity in the pressurized nickelate La3Ni2O7 in the vicinity of a BEC–BCS crossover 加压镍酸盐 La3Ni2O7 在 BEC-BCS 交叉点附近的超导性
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-09 DOI: 10.1038/s42005-024-01854-9
Henning Schlömer, Ulrich Schollwöck, Fabian Grusdt, Annabelle Bohrdt
{"title":"Superconductivity in the pressurized nickelate La3Ni2O7 in the vicinity of a BEC–BCS crossover","authors":"Henning Schlömer, Ulrich Schollwöck, Fabian Grusdt, Annabelle Bohrdt","doi":"10.1038/s42005-024-01854-9","DOIUrl":"10.1038/s42005-024-01854-9","url":null,"abstract":"Ever since the discovery of high-temperature superconductivity in cuprates, gaining microscopic insights into the nature of pairing in strongly correlated systems has remained one of the greatest challenges in modern condensed matter physics. Following recent experiments reporting superconductivity in the bilayer nickelate La3Ni2O7 (LNO) with remarkably high critical temperatures of Tc = 80 K, it has been argued that the low-energy physics of LNO can be described by the strongly correlated, mixed-dimensional bilayer t–J model. Here we investigate this bilayer system and utilize density matrix renormalization group techniques to establish a thorough understanding of the model and the magnetically induced pairing through comparison to the perturbative limit of dominating inter-layer spin couplings. In particular, this allows us to explain appearing finite-size effects, firmly establishing the existence of long-range superconducting order in the thermodynamic limit. By analyzing binding energies, we predict a BEC–BCS crossover as a function of the Hamiltonian parameters. We find large binding energies of the order of the inter-layer coupling that suggest strikingly high critical temperatures of the Berezinskii–Kosterlitz–Thouless transition, raising the question of whether (mixD) bilayer superconductors possibly facilitate critical temperatures above room temperature. The authors study a minimal model to describe the physics of bilayer nickelates, a novel high-temperature superconductor. They find that the model features extraordinarily high critical temperatures for superconductivity, and gain a detailed understanding of the underlying physics through an intuitive perturbative limit.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01854-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling nodeless unconventional superconductivity proximate to honeycomb-vacancy ordering in the Ir-Sb binary system 揭示 Ir-Sb 双元体系中接近于蜂窝空位有序的无节点非常规超导性
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-08 DOI: 10.1038/s42005-024-01857-6
V. Sazgari, T. P. Ying, J. N. Graham, C. Mielke III, D. Das, S. S. Islam, S. Shin, M. Medarde, M. Bartkowiak, R. Khasanov, H. Luetkens, H. Hosono, Z. Guguchia
{"title":"Unveiling nodeless unconventional superconductivity proximate to honeycomb-vacancy ordering in the Ir-Sb binary system","authors":"V. Sazgari, T. P. Ying, J. N. Graham, C. Mielke III, D. Das, S. S. Islam, S. Shin, M. Medarde, M. Bartkowiak, R. Khasanov, H. Luetkens, H. Hosono, Z. Guguchia","doi":"10.1038/s42005-024-01857-6","DOIUrl":"10.1038/s42005-024-01857-6","url":null,"abstract":"Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown. To explore this, we conducted muon spin rotation experiments on Ir1−δSb (synthesized at 5.5 GPa, Tc = 4.2 K) and ambient pressure synthesized optimally Rh-doped Ir1−xRhxSb (x=0.3, Tc = 2.7 K). The exponential temperature dependence of the superfluid density suggests a fully gapped superconducting state exists in both samples. The ratio of Tc to the superfluid density resembles that of unconventional superconductors. A significant increase in the superfluid density in the high-pressure synthesized sample correlates with Tc, indicating that unconventional superconductivity is intrinsic to the Ir-Sb binary system. These findings, along with the dome-shaped phase diagram, highlight IrSb as the first unconventional superconducting parent phase with ordered vacancies, requiring further theoretical investigations. Vacancies or defects are structural features of the crystal lattice that can be used to engineer the physical properties of a solid-state system, and have played an important role in the investigation of quantum materials. Here, the authors apply muon spin rotation to explore the suppression of vacancy ordering in Rh-doped Ir1−xRhxSb and discuss the potential presence of unconventional superconductivity in the system.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-7"},"PeriodicalIF":5.4,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01857-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142596150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon 强 X 射线自由电子激光脉冲诱导的电子云排列动力学:原子氩的案例研究
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2024-11-07 DOI: 10.1038/s42005-024-01852-x
Laura Budewig, Sang-Kil Son, Robin Santra
{"title":"Electron-cloud alignment dynamics induced by an intense X-ray free-electron laser pulse: a case study on atomic argon","authors":"Laura Budewig, Sang-Kil Son, Robin Santra","doi":"10.1038/s42005-024-01852-x","DOIUrl":"10.1038/s42005-024-01852-x","url":null,"abstract":"In an intense X-ray free-electron laser (XFEL) pulse, atoms are sequentially ionised by multiple X-ray photons. Photoionisation generally induces an alignment of the electron cloud of the produced atomic ion regarding its orbital-angular-momentum projections. However, how the alignment evolves during sequential X-ray multi-photon ionisation accompanied by decay processes has been unexplored. Here we present a theoretical prediction of the time evolution of the electron-cloud alignment of argon ions induced by XFEL pulses. To this end, we calculate state-resolved ionisation dynamics of atomic argon interacting with an intense linearly polarised X-ray pulse, which generates ions in a wide range of charge states with non-zero orbital- and spin-angular momenta. Employing time-resolved alignment parameters, we predict the existence of non-trivial alignment dynamics during intense XFEL pulses. This implies that even if initially the atomic electron cloud is perfectly spherically symmetric, X-ray multi-photon ionisation can lead to noticeable reshaping of the electron cloud. Single photoionisation can align an atomic electron cloud, yet it is unexplored how the alignment evolves during sequential multi-photon multiple ionisation induced by intense X-ray pulses. In their paper, the authors predict the existence of non-trivial electron-cloud alignment dynamics in quantum-state-resolved X-ray multi-photon ionisation.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01852-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142595697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信