接近金属绝缘体跃迁的候选基塔耶夫自旋液体中的各向异性磁相互作用

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Zeyu Ma, Danrui Ni, David A. S. Kaib, Kylie MacFarquharson, John S. Pearce, Robert J. Cava, Roser Valentí, Radu Coldea, Amalia I. Coldea
{"title":"接近金属绝缘体跃迁的候选基塔耶夫自旋液体中的各向异性磁相互作用","authors":"Zeyu Ma, Danrui Ni, David A. S. Kaib, Kylie MacFarquharson, John S. Pearce, Robert J. Cava, Roser Valentí, Radu Coldea, Amalia I. Coldea","doi":"10.1038/s42005-024-01873-6","DOIUrl":null,"url":null,"abstract":"In the Kitaev honeycomb model, spins coupled by strongly-frustrated anisotropic interactions do not order at low temperature but instead form a quantum spin liquid with spin fractionalisation into Majorana fermions and static fluxes. The realization of such a model in crystalline materials could lead to major breakthroughs in understanding entangled quantum states, however achieving this in practice is a very challenging task. The recently synthesized honeycomb material RuI3 shows no long-range magnetic order down to the lowest probed temperatures and has been theoretically proposed as a quantum spin liquid candidate material on the verge of an insulator to metal transition. Here we report a comprehensive study of the magnetic anisotropy in un-twinned single crystals via torque magnetometry and detect clear signatures of strongly anisotropic and frustrated magnetic interactions. We attribute the development of sawtooth and six-fold torque signal to strongly anisotropic, bond-dependent magnetic interactions by comparing to theoretical calculations. As a function of magnetic field strength at low temperatures, torque shows an unusual non-parabolic dependence suggestive of a proximity to a field-induced transition. Thus, RuI3, without signatures of long-range magnetic order, displays key hallmarks of an exciting candidate for extended Kitaev magnetism with enhanced quantum fluctuations. Quantum spin liquids are materials predicted to be absent of magnetic ordering at low temperature, giving rise to fractionalised electronic states, but conclusive experimental evidence is still absent. Here, the authors conduct angular dependent torque measurements on the candidate spin liquid material RuI3 and, through a comparison of experimental and theoretical results, provide evidence indicating the presence of frustrated magnetic interactions in the system.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01873-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Anisotropic magnetic interactions in a candidate Kitaev spin liquid close to a metal-insulator transition\",\"authors\":\"Zeyu Ma, Danrui Ni, David A. S. Kaib, Kylie MacFarquharson, John S. Pearce, Robert J. Cava, Roser Valentí, Radu Coldea, Amalia I. Coldea\",\"doi\":\"10.1038/s42005-024-01873-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Kitaev honeycomb model, spins coupled by strongly-frustrated anisotropic interactions do not order at low temperature but instead form a quantum spin liquid with spin fractionalisation into Majorana fermions and static fluxes. The realization of such a model in crystalline materials could lead to major breakthroughs in understanding entangled quantum states, however achieving this in practice is a very challenging task. The recently synthesized honeycomb material RuI3 shows no long-range magnetic order down to the lowest probed temperatures and has been theoretically proposed as a quantum spin liquid candidate material on the verge of an insulator to metal transition. Here we report a comprehensive study of the magnetic anisotropy in un-twinned single crystals via torque magnetometry and detect clear signatures of strongly anisotropic and frustrated magnetic interactions. We attribute the development of sawtooth and six-fold torque signal to strongly anisotropic, bond-dependent magnetic interactions by comparing to theoretical calculations. As a function of magnetic field strength at low temperatures, torque shows an unusual non-parabolic dependence suggestive of a proximity to a field-induced transition. Thus, RuI3, without signatures of long-range magnetic order, displays key hallmarks of an exciting candidate for extended Kitaev magnetism with enhanced quantum fluctuations. Quantum spin liquids are materials predicted to be absent of magnetic ordering at low temperature, giving rise to fractionalised electronic states, but conclusive experimental evidence is still absent. Here, the authors conduct angular dependent torque measurements on the candidate spin liquid material RuI3 and, through a comparison of experimental and theoretical results, provide evidence indicating the presence of frustrated magnetic interactions in the system.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01873-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01873-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01873-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在Kitaev蜂巢模型中,由强受挫的各向异性相互作用耦合的自旋在低温下并不有序,而是形成一种自旋分形为马约拉纳费米子和静态通量的量子自旋液体。在晶体材料中实现这样的模型可能会在理解纠缠量子态方面取得重大突破,然而在实践中实现这一目标是一项非常具有挑战性的任务。最近合成的蜂窝材料ru3在最低探测温度下显示出无长程磁序,并在理论上被提出作为一种处于绝缘体到金属过渡边缘的量子自旋液体候选材料。在这里,我们报告了通过转矩磁强计对非孪晶单晶磁各向异性的全面研究,并检测到强各向异性和受挫磁相互作用的清晰特征。通过与理论计算的比较,我们将锯齿形和六倍转矩信号的发展归因于强各向异性、键相关的磁相互作用。作为低温下磁场强度的函数,转矩表现出不寻常的非抛物线依赖性,表明接近场致转变。因此,没有长程磁序特征的ru3,显示了具有增强量子涨落的扩展基塔耶夫磁性的令人兴奋的候选者的关键特征。量子自旋液体是一种被预测在低温下没有磁有序的材料,可以产生分馏电子态,但目前还没有确凿的实验证据。在这里,作者对候选自旋液体材料ru3进行了角相关扭矩测量,并通过实验和理论结果的比较,提供了表明系统中存在受挫磁相互作用的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Anisotropic magnetic interactions in a candidate Kitaev spin liquid close to a metal-insulator transition

Anisotropic magnetic interactions in a candidate Kitaev spin liquid close to a metal-insulator transition
In the Kitaev honeycomb model, spins coupled by strongly-frustrated anisotropic interactions do not order at low temperature but instead form a quantum spin liquid with spin fractionalisation into Majorana fermions and static fluxes. The realization of such a model in crystalline materials could lead to major breakthroughs in understanding entangled quantum states, however achieving this in practice is a very challenging task. The recently synthesized honeycomb material RuI3 shows no long-range magnetic order down to the lowest probed temperatures and has been theoretically proposed as a quantum spin liquid candidate material on the verge of an insulator to metal transition. Here we report a comprehensive study of the magnetic anisotropy in un-twinned single crystals via torque magnetometry and detect clear signatures of strongly anisotropic and frustrated magnetic interactions. We attribute the development of sawtooth and six-fold torque signal to strongly anisotropic, bond-dependent magnetic interactions by comparing to theoretical calculations. As a function of magnetic field strength at low temperatures, torque shows an unusual non-parabolic dependence suggestive of a proximity to a field-induced transition. Thus, RuI3, without signatures of long-range magnetic order, displays key hallmarks of an exciting candidate for extended Kitaev magnetism with enhanced quantum fluctuations. Quantum spin liquids are materials predicted to be absent of magnetic ordering at low temperature, giving rise to fractionalised electronic states, but conclusive experimental evidence is still absent. Here, the authors conduct angular dependent torque measurements on the candidate spin liquid material RuI3 and, through a comparison of experimental and theoretical results, provide evidence indicating the presence of frustrated magnetic interactions in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信