I Oliveras Menor, N Prat-Guitart, G L Spadoni, A Hsu, P M Fernandes, R Puig-Gironès, D Ascoli, B A Bilbao, V Bacciu, L Brotons, R Carmenta, S de-Miguel, L G Gonçalves, G Humphrey, V Ibarnegaray, M W Jones, M S Machado, A Millán, R de Morais Falleiro, F Mouillot, C Pinto, P Pons, A Regos, M Senra de Oliveira, S P Harrison, D Armenteras Pascual
{"title":"Integrated fire management as an adaptation and mitigation strategy to altered fire regimes.","authors":"I Oliveras Menor, N Prat-Guitart, G L Spadoni, A Hsu, P M Fernandes, R Puig-Gironès, D Ascoli, B A Bilbao, V Bacciu, L Brotons, R Carmenta, S de-Miguel, L G Gonçalves, G Humphrey, V Ibarnegaray, M W Jones, M S Machado, A Millán, R de Morais Falleiro, F Mouillot, C Pinto, P Pons, A Regos, M Senra de Oliveira, S P Harrison, D Armenteras Pascual","doi":"10.1038/s43247-025-02165-9","DOIUrl":"10.1038/s43247-025-02165-9","url":null,"abstract":"<p><p>Altered fire regimes are a global challenge, increasingly exacerbated by climate change, which modifies fire weather and prolongs fire seasons. These changing conditions heighten the vulnerability of ecosystems and human populations to the impacts of wildfires on the environment, society, and the economy. The rapid pace of these changes exposes significant gaps in knowledge, tools, technology, and governance structures needed to adopt informed, holistic approaches to fire management that address both current and future challenges. Integrated Fire Management is an approach that combines fire prevention, response, and recovery while integrating ecological, socio-economic, and cultural factors into management strategies. However, Integrated Fire Management remains highly context-dependent, encompassing a wide array of fire management practices with varying degrees of ecological and societal integration. This review explores Integrated Fire Management as both an adaptation and mitigation strategy for altered fire regimes. It provides an overview of the progress and challenges associated with implementing Integrated Fire Management across different regions worldwide. The review also proposes five core objectives and outlines a roadmap of incremental steps for advancing Integrated Fire Management as a strategy to adapt to ongoing and future changes in fire regimes, thereby maximizing its potential to benefit both people and nature.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"202"},"PeriodicalIF":8.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910340/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143647580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katy Ivison, Kerryn Little, Alice Orpin, Claire M Belcher, Gareth D Clay, Stefan H Doerr, Thomas E L Smith, Roxane Andersen, Laura J Graham, Nicholas Kettridge
{"title":"Unprecedented UK heatwave harmonised drivers of fuel moisture creating extreme temperate wildfire risk.","authors":"Katy Ivison, Kerryn Little, Alice Orpin, Claire M Belcher, Gareth D Clay, Stefan H Doerr, Thomas E L Smith, Roxane Andersen, Laura J Graham, Nicholas Kettridge","doi":"10.1038/s43247-025-02746-8","DOIUrl":"10.1038/s43247-025-02746-8","url":null,"abstract":"<p><p>Climate change is resulting in more extreme fire weather during major heatwaves. Across temperate Europe, shrub landscapes dominate the area burned, with the moisture content of fuels during these events determining the threat posed. Current controls on the moisture content of temperate fuel constituents and their response to future extreme heatwaves are not known. We took field measurements of live and dead heather (<i>Calluna vulgaris</i>) and organic soil moisture content across the UK over 3 years, including an intensive sampling campaign during the July 2022 heatwave. Here, we show that the fuel moisture content of live fuel is associated significantly with phenological variables, dead fuel only with weather variables, whilst organic-rich ground fuels are more associated with landscape variables. However, during the record 2022 heatwave there was a harmonisation in fuel moisture controls across different fuel constituents, with those controls being driven by weather alone. This caused synchronised extreme dryness outside of current seasonal norms across all fuel constituents at the same time and place. Future intense summer heatwaves can therefore be expected to align the most severe conditions for fire ignition, spread and impact in traditionally non-fire prone regions, producing humid temperate landscapes susceptible to extreme wildfire events.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"727"},"PeriodicalIF":8.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401727/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144991663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mengli Chen, Ludovica Gazze, Francis J DiTraglia, Reshmi Das, Jerome Nriagu, Yigal Erel, Edward A Boyle, Caroline M Taylor, Dominik Weiss
{"title":"Environmental lead risk in the 21st century.","authors":"Mengli Chen, Ludovica Gazze, Francis J DiTraglia, Reshmi Das, Jerome Nriagu, Yigal Erel, Edward A Boyle, Caroline M Taylor, Dominik Weiss","doi":"10.1038/s43247-025-02735-x","DOIUrl":"10.1038/s43247-025-02735-x","url":null,"abstract":"<p><p>Lead has been central to technological development for centuries; however, its release into the environment and subsequent human exposure pose significant public health risks. The review presented here critically assesses the contemporary environmental lead risk as global lead production and use are rapidly increasing, largely driven by the rising demand for electrification. We show that environmental lead exposure persists today due to legacy contamination, ongoing coal usage, and insufficient protection of workforces during production, use, and recycling of lead-acid batteries and other lead-containing products, particularly in low- and middle- income countries. We estimate that contemporary childhood lead exposure alone leads to an annual global economic loss exceeding $3.4 trillion (2021 US dollars adjusted for purchasing power parity), with pronounced disparities between high- and low- and middle- income countries. To prevent a large-scale resurgence in lead exposure, we identify four critical areas for urgent policy intervention.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"776"},"PeriodicalIF":8.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12484081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145211952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Richard J Harrison, Jeffrey Neethirajan, Zhaowen Pei, Pengfei Xue, Lourdes Marcano, Radu Abrudan, Emilie Ringe, Po-Yen Tung, Venkata S C Kuppili, Burkhard Kaulich, Benedikt J Daurer, Luis Carlos Colocho Hurtarte, Majid Kazemian, Liao Chang, Claire Donnelly, Sergio Valencia
{"title":"Magnetic vector tomography reveals giant magnetofossils are optimised for magnetointensity reception.","authors":"Richard J Harrison, Jeffrey Neethirajan, Zhaowen Pei, Pengfei Xue, Lourdes Marcano, Radu Abrudan, Emilie Ringe, Po-Yen Tung, Venkata S C Kuppili, Burkhard Kaulich, Benedikt J Daurer, Luis Carlos Colocho Hurtarte, Majid Kazemian, Liao Chang, Claire Donnelly, Sergio Valencia","doi":"10.1038/s43247-025-02721-3","DOIUrl":"https://doi.org/10.1038/s43247-025-02721-3","url":null,"abstract":"<p><p>Giant magnetofossils are unusual, micron-sized biogenic magnetite particles found in sediments dating back at least 97 million years. Their distinctive morphologies are the product of biologically controlled mineralisation, yet the identity of their biomineralising organism, and the biological function they serve, remain a mystery. It is currently thought that the organism exploited magnetite's mechanical properties for protection. Here we explore an alternative hypothesis, that it exploited magnetite's magnetic properties for the purpose of magnetoreception. We present a three-dimensional magnetic vector tomography study of a giant magnetofossil and assess its magnetoreceptive potential. Our results reveal a single magnetic vortex that displays an optimised response to spatial variations in the intensity of Earth's magnetic field. This magnetic trait may have conferred an evolutionary advantage to mobile marine organisms, providing an upper age limit on the development of navigational magnetoreception and raising the possibility that earlier evidence of this sense may yet be preserved in the fossil record. More broadly, this work provides a blueprint for assessing the morphological and magnetic evidence for putative biogenic iron oxide particles, which are a key component in the search for early life on Earth and Mars.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"810"},"PeriodicalIF":8.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12537488/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145343894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fluid inclusions: tiny windows into global paleo-environments.","authors":"D V Bekaert, G Avice, B Marty","doi":"10.1038/s43247-025-02799-9","DOIUrl":"10.1038/s43247-025-02799-9","url":null,"abstract":"<p><p>Geochemical traces of past environments are preserved in the geological record. Although secondary processes often erase this information, fluid inclusions in hydrothermal minerals act as time capsules for reconstructing the evolution of Earth's atmosphere and oceans, including the Great Oxidation Event (GOE). Here, we summarize decades of insights from analyses of ancient fluids in hydrothermal minerals worldwide. These geochemical constraints illuminate the formation of the atmosphere, its evolution through volcanism, escape to space, and subduction. Reconstructions of past atmospheric noble gas and nitrogen compositions, along with ocean salinity, reveal major steps in our planet's evolution. They shed unique light on long-standing questions, including Earth's climate under a faint young Sun, the missing Xe paradox, the cause and timing of oxygenation, the emergence of continents, and the flourishing of life. A refined understanding of the physical mechanisms driving xenon isotopic evolution prior to the GOE may further constrain links between early solar activity and early environmental changes.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"820"},"PeriodicalIF":8.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12534184/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145328375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Weikai Li, Zhiming Yang, Zoltán Zajacz, Limin Zhou, Zengqian Hou
{"title":"Carbonate- and silicate-metasomatized mantle beneath Himalayan-Tibetan orogenic belt.","authors":"Weikai Li, Zhiming Yang, Zoltán Zajacz, Limin Zhou, Zengqian Hou","doi":"10.1038/s43247-025-02778-0","DOIUrl":"10.1038/s43247-025-02778-0","url":null,"abstract":"<p><p>The extreme geochemical enrichment of post-collisional potassium-rich lava in the Alpine-Himalayan orogenic belt has led researchers to hypothesize that enrichment is inherited from a metasomatized mantle source potentially incorporating crustal components. However, direct verification of metasomatic processes remains challenging due to the scarcity of mantle rocks preserving metasomatism records. Here, we report two groups of mantle xenolith entrained in Tibetan ultrapotassic lavas. Integrated petrographic observations, whole-rock geochemistry, and in-situ microanalysis reveal that subcontinental lithospheric mantle exhibits extreme enrichment in both isotopes and incompatible elements. Textural evidence of vein networks and melt pockets in xenoliths indicate the coexistence of carbonate and silicate metasomatic regimes. Considering subduction-collision background, we propose that the recycling of Indian continental materials during collision substantially contributes to the metasomatic enrichment of the Tibetan subcontinental lithospheric mantle.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"814"},"PeriodicalIF":8.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12532592/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145328380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kalliopi Violaki, Christos Panagiotopoulos, Claudia Esther Avalos, Pierre Rossi, Ernest Abboud, Maria Kanakidou, Athanasios Nenes
{"title":"Solid-state <sup>31</sup>P NMR reveals the biological organophosphorus compounds as the dominant phosphorus species in Saharan dust aerosols.","authors":"Kalliopi Violaki, Christos Panagiotopoulos, Claudia Esther Avalos, Pierre Rossi, Ernest Abboud, Maria Kanakidou, Athanasios Nenes","doi":"10.1038/s43247-025-02164-w","DOIUrl":"10.1038/s43247-025-02164-w","url":null,"abstract":"<p><p>Phosphorus is a critical nutrient affecting primary productivity across all ecosystems. Many regions worldwide are limited or co-limited by phosphorus availability, which can be alleviated through atmospheric deposition. Dust is known to be a key external source of phosphorus in ecosystems, assumed to be in the form of various insoluble inorganic minerals. We show that this view is largely incomplete and here we present conclusive evidence, that organic phosphorus as diesters, primarily associated with biological materials. Phosphate diesters significantly correlated with soil bacteria found in dust, implying a direct link with microbial soil communities, without excluding the eukaryotic cells. Phosphate diesters in dust, along with abundant alkaline phosphatase, may contribute 70% to daily primary productivity in the eastern Mediterranean, highlighting the potential of organic phosphorus substrates present in dust as airborne microorganisms to impact the biogeochemistry of oligotrophic environments via atmospheric deposition.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"225"},"PeriodicalIF":8.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929610/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143699869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Riley N Loria, Jessica Pugel, Matthew H Goldberg, Deborah A Halla, Rebecca Bascom, J Taylor Scott, Max Crowley, Elizabeth C Long
{"title":"Email outreach attracts the US policymakers' attention to climate change but common advocacy techniques do not improve engagement.","authors":"Riley N Loria, Jessica Pugel, Matthew H Goldberg, Deborah A Halla, Rebecca Bascom, J Taylor Scott, Max Crowley, Elizabeth C Long","doi":"10.1038/s43247-025-02055-0","DOIUrl":"10.1038/s43247-025-02055-0","url":null,"abstract":"<p><p>One of the most challenging aspects of climate change mitigation today is not identifying solutions but reaching political leaders with climate scientists' existing solutions. Although there is substantial research on climate change communication, research rarely focuses on one of the most impactful groups: policymakers. It is essential to test theoretically sound methods to increase lawmakers' attention to research evidence. In a series of four rapid-cycle randomized controlled email trials (<i>N</i> = 6642-7620 per trial), we test three common and theoretically derived advocacy tactics to increase U.S. policymaker engagement with a climate change fact sheet sent via email (i.e., a norms manipulation, a number focused manipulation, and emotional language manipulation). In all four trials, the control message increased engagement more than messages using advocacy tactics, measured by fact sheet clicks. This demonstrates the importance of testing communication methods within the appropriate populations, especially a population with considerable influence over climate policy.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"76"},"PeriodicalIF":8.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Agniv Sengupta, Duane E Waliser, Michael J DeFlorio, Bin Guan, Luca Delle Monache, F Martin Ralph
{"title":"Role of evolving sea surface temperature modes of variability in improving seasonal precipitation forecasts.","authors":"Agniv Sengupta, Duane E Waliser, Michael J DeFlorio, Bin Guan, Luca Delle Monache, F Martin Ralph","doi":"10.1038/s43247-025-02235-y","DOIUrl":"10.1038/s43247-025-02235-y","url":null,"abstract":"<p><p>The value of improving longer-lead precipitation forecasting in the water-stressed, semi-arid western United States cannot be overstated, especially considering the severity and frequency of droughts that have plagued the region for much of the 21<sup>st</sup> century. Seasonal prediction skill of current operational forecast systems, however, remain insufficient for decision-making purposes across a variety of applications. To address this capability gap, we develop a seasonal forecasting system that leverages the long-term memory of leading global and basin-scale modes of sea surface temperature variability. This approach focuses on characterizing and capitalizing on the spatiotemporal evolution of predictor modes over multiple antecedent seasons, instead of the customary use of predictive information from just the current season. Another distinctive methodological feature is the incorporation of sources of predictability spanning multiple timescales, from interannual to decadal-multidecadal. An evaluation of the forecast system's performance from cross-validation analyses demonstrates skill over core winter precipitation regions-California, Pacific Northwest, and the Upper Colorado River basin. The developed model exhibits superior skill compared to dynamical and statistical benchmarks in predicting winter precipitation. Experimental seasonal precipitation forecasts from the model have the potential to provide critical situational awareness guidance to stakeholders in the water resources, agriculture, and disaster preparedness communities.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"256"},"PeriodicalIF":8.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968401/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143794943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yi Jiao, Magnus Kramshøj, Cleo L Davie-Martin, Bo Elberling, Riikka Rinnan
{"title":"The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds.","authors":"Yi Jiao, Magnus Kramshøj, Cleo L Davie-Martin, Bo Elberling, Riikka Rinnan","doi":"10.1038/s43247-025-02007-8","DOIUrl":"10.1038/s43247-025-02007-8","url":null,"abstract":"<p><p>Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds. Results show that these soils can actively function as sinks of these compounds, despite their different physiochemical properties. Upper active layer possessed relatively higher uptake capacities; factors including soil moisture, organic matter, and microbial biomass carbon were identified as the main factors correlating with the uptake rates. Additionally, uptake coefficients for several compounds were calculated for their potential use in future model development. Correlation analysis and the varying coefficients indicate that the sink was likely biotic. The development of a deeper active layer under climate change may enhance the sink capacity and reduce the net emissions of volatile organic compounds from permafrost thaw.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"32"},"PeriodicalIF":8.1,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11748482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143022521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}