Communications Earth & Environment最新文献

筛选
英文 中文
Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions 即使在极端地形-天气条件下,阶梯燃料而非树冠体积也能持续预测野火的严重程度
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-20 DOI: 10.1038/s43247-024-01893-8
Christopher R. Hakkenberg, Matthew L. Clark, Tim Bailey, Patrick Burns, Scott J. Goetz
{"title":"Ladder fuels rather than canopy volumes consistently predict wildfire severity even in extreme topographic-weather conditions","authors":"Christopher R. Hakkenberg, Matthew L. Clark, Tim Bailey, Patrick Burns, Scott J. Goetz","doi":"10.1038/s43247-024-01893-8","DOIUrl":"10.1038/s43247-024-01893-8","url":null,"abstract":"Drivers of forest wildfire severity include fuels, topography and weather. However, because only fuels can be actively managed, quantifying their effects on severity has become an urgent research priority. Here we employed GEDI spaceborne lidar to consistently assess how pre-fire forest fuel structure affected wildfire severity across 42 California wildfires between 2019–2021. Using a spatial-hierarchical modeling framework, we found a positive concave-down relationship between GEDI-derived fuel structure and wildfire severity, marked by increasing severity with greater fuel loads until a decline in severity in the tallest and most voluminous forest canopies. Critically, indicators of canopy fuel volumes (like biomass and height) became decoupled from severity patterns in extreme topographic and weather conditions (slopes >20°; winds > 9.3 m/s). On the other hand, vertical continuity metrics like layering and ladder fuels more consistently predicted severity in extreme conditions – especially ladder fuels, where sparse understories were uniformly associated with lower severity levels. These results confirm that GEDI-derived fuel estimates can overcome limitations of optical imagery and airborne lidar for quantifying the interactive drivers of wildfire severity. Furthermore, these findings have direct implications for designing treatment interventions that target ladder fuels versus entire canopies and for delineating wildfire risk across topographic and weather conditions. Wildfire severity is more consistently associated with vertical fuel continuity metrics such as ladder fuels rather than total canopy volumes across a range of topography and weather conditions, according to an analysis of GEDI spaceborne lidar data for 42 California fires between 2019–2021.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01893-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drying of the Martian mesosphere during aphelion induced by lower temperatures 远日点期间较低温度引起的火星中间层干燥
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-20 DOI: 10.1038/s43247-024-01878-7
Daniel Toledo, Pascal Rannou, Victor Apéstigue, Raul Rodriguez-Veloso, Ignacio Arruego, German Martínez, Leslie Tamppari, Asier Munguira, Ralph Lorenz, Aurélien Stcherbinine, Franck Montmessin, Agustin Sanchez-Lavega, Priya Patel, Michael Smith, Mark Lemmon, Alvaro Vicente-Retortillo, Claire Newman, Daniel Viudez-Moreiras, Ricardo Hueso, Tanguy Bertrand, Jorge Pla-Garcia, Margarita Yela, Manuel de la Torre Juarez, Jose Antonio Rodriguez-Manfredi
{"title":"Drying of the Martian mesosphere during aphelion induced by lower temperatures","authors":"Daniel Toledo, Pascal Rannou, Victor Apéstigue, Raul Rodriguez-Veloso, Ignacio Arruego, German Martínez, Leslie Tamppari, Asier Munguira, Ralph Lorenz, Aurélien Stcherbinine, Franck Montmessin, Agustin Sanchez-Lavega, Priya Patel, Michael Smith, Mark Lemmon, Alvaro Vicente-Retortillo, Claire Newman, Daniel Viudez-Moreiras, Ricardo Hueso, Tanguy Bertrand, Jorge Pla-Garcia, Margarita Yela, Manuel de la Torre Juarez, Jose Antonio Rodriguez-Manfredi","doi":"10.1038/s43247-024-01878-7","DOIUrl":"10.1038/s43247-024-01878-7","url":null,"abstract":"The formation of water ice clouds or hazes on Mars imposes substantial limitations on the vertical transport of water into the middle-upper atmosphere, impacting the planet’s hydrogen loss. Recent observations made by the Mars Environmental Dynamics Analyzer instrument onboard Mars 2020 Perseverance rover have shown a marked decline in water ice abundance within the mesosphere (above 35-40 km) when Mars is near its aphelion (near the northern summer solstice), notably occurring during solar longitudes (Ls) between Ls 70∘ and 80∘. Orbital observations around the same latitudes indicate that temperatures between  ~ 30-40 km reach a minimum during the same period. Using cloud microphysics simulations, we demonstrate that this decrease in temperature effectively increases the amount of water cold-trapped at those altitudes, confining water ice condensation to lower altitudes. Similarly, the reinforcement of the cold trap induced by the lower temperatures results in significant reductions in the water vapor mixing ratio above 35–40 km, explaining the confinement of water vapor observed around aphelion from orbiters. Low atmospheric temperatures during the Martian aphelion freeze water ice in the troposphere which is then cold trapped and unable to transit up into the mesosphere, according to a radiative transfer model and cloud microphysics simulations","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01878-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Power sector benefits of flexible heat pumps in 2030 scenarios 2030 年情景下灵活热泵的电力部门效益
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-20 DOI: 10.1038/s43247-024-01861-2
Alexander Roth, Carlos Gaete-Morales, Dana Kirchem, Wolf-Peter Schill
{"title":"Power sector benefits of flexible heat pumps in 2030 scenarios","authors":"Alexander Roth, Carlos Gaete-Morales, Dana Kirchem, Wolf-Peter Schill","doi":"10.1038/s43247-024-01861-2","DOIUrl":"10.1038/s43247-024-01861-2","url":null,"abstract":"Heat pumps play a major role in decreasing fossil fuel use in heating. They increase electricity demand, but could also foster the system integration of variable renewable energy sources. We analyze three scenarios for expanding decentralized heat pumps in Germany by 2030, focusing on the role of buffer heat storage. Using an open-source power sector model, we assess costs, capacity investments, and emissions effects. We find that investments in solar photovoltaics can cost-effectively accompany the roll-out of heat pumps in case wind power expansion potentials are limited. Results further show that short-duration heat storage substantially reduces the need for firm capacity and battery storage. Larger heat storage sizes do not substantially change the results. Increasing the number of heat pumps from 1.7 to 10 million units could annually save more than half of Germany’s private and commercial natural gas consumption and around half of households’ building-related CO2 emissions. Investments in solar photovoltaics could cost-effectively support the expansion of heat pumps by 2030, and small thermal storage of heat pumps could reduce the additional need for firm capacity and battery storage, according to an analysis that uses an open-source power sector model.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01861-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A global overview of marine heatwaves in a changing climate 不断变化的气候中的海洋热浪全球概览
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-20 DOI: 10.1038/s43247-024-01806-9
Antonietta Capotondi, Regina R. Rodrigues, Alex Sen Gupta, Jessica A. Benthuysen, Clara Deser, Thomas L. Frölicher, Nicole S. Lovenduski, Dillon J. Amaya, Natacha Le Grix, Tongtong Xu, Juliet Hermes, Neil J. Holbrook, Cristian Martinez-Villalobos, Simona Masina, Mathew Koll Roxy, Amandine Schaeffer, Robert W. Schlegel, Kathryn E. Smith, Chunzai Wang
{"title":"A global overview of marine heatwaves in a changing climate","authors":"Antonietta Capotondi, Regina R. Rodrigues, Alex Sen Gupta, Jessica A. Benthuysen, Clara Deser, Thomas L. Frölicher, Nicole S. Lovenduski, Dillon J. Amaya, Natacha Le Grix, Tongtong Xu, Juliet Hermes, Neil J. Holbrook, Cristian Martinez-Villalobos, Simona Masina, Mathew Koll Roxy, Amandine Schaeffer, Robert W. Schlegel, Kathryn E. Smith, Chunzai Wang","doi":"10.1038/s43247-024-01806-9","DOIUrl":"10.1038/s43247-024-01806-9","url":null,"abstract":"Marine heatwaves have profoundly impacted marine ecosystems over large areas of the world oceans, calling for improved understanding of their dynamics and predictability. Here, we critically review the recent substantial advances in this active area of research, including the exploration of the three-dimensional structure and evolution of these extremes, their drivers, their connection with other extremes in the ocean and over land, future projections, and assessment of their predictability and current prediction skill. To make progress on predicting and projecting marine heatwaves and their impacts, a more complete mechanistic understanding of these extremes over the full ocean depth and at the relevant spatial and temporal scales is needed, together with models that can realistically capture the leading mechanisms at those scales. Sustained observing systems, as well as measuring platforms that can be rapidly deployed, are essential to achieve comprehensive event characterizations while also chronicling the evolving nature of these extremes and their impacts in our changing climate. Improved understanding of marine heatwave predictability and impacts requires analysis of these extremes at full ocean depth, using models and observations capturing their key drivers at the relevant scales, according to a broad literature review.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-17"},"PeriodicalIF":8.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01806-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Central European warm phases recorded by episodic speleothem growth during MIS 3 中欧温暖阶段由 MIS 3 期间偶发的岩浆生长记录下来
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-20 DOI: 10.1038/s43247-024-01863-0
Jennifer Klose, Michael Weber, Denis Scholz
{"title":"Central European warm phases recorded by episodic speleothem growth during MIS 3","authors":"Jennifer Klose, Michael Weber, Denis Scholz","doi":"10.1038/s43247-024-01863-0","DOIUrl":"10.1038/s43247-024-01863-0","url":null,"abstract":"Speleothems provide exceptional age control and are a valuable archive for the identification of warm phases in temperate climates. Here we present a speleothem composite record from Germany, which shows episodic growth during the last glacial period, coinciding with several Greenland Interstadials. Using a combined approach of high-resolution solution and in-situ laser ablation 230Th/U-dating, we were able to precisely constrain the timing and duration of several particularly warm phases during Marine Isotope Stage 3. Climatic conditions favourable for speleothem growth occurred episodically until 32,000 years ago, much longer than reported from existing speleothem records. The inception of speleothem growth lags the onset of Greenland Interstadials and covers approximately 88% of their total duration during early, and approximately 25% during middle and late Marine Isotope Stage 3. This indicates progressive climatic cooling during Marine Isotope Stage 3, with the speleothem growth phases representing persistent Central European warm phases. Precisely dated growth phases of speleothems from Bleßberg Cave, Germany, provide snapshots of particularly warm and stable climate during Marine Isotope Stage 3 in Central Europe using both high-resolution solution and in situ 230Th/U dating.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01863-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthropogenic climate change doubled the frequency of compound drought and heatwaves in low-income regions 人为气候变化使低收入地区的复合干旱和热浪频率增加了一倍
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-19 DOI: 10.1038/s43247-024-01894-7
Boen Zhang, Shuo Wang, Louise Slater
{"title":"Anthropogenic climate change doubled the frequency of compound drought and heatwaves in low-income regions","authors":"Boen Zhang, Shuo Wang, Louise Slater","doi":"10.1038/s43247-024-01894-7","DOIUrl":"10.1038/s43247-024-01894-7","url":null,"abstract":"Compound drought-heatwaves have garnered widespread attention due to their catastrophic consequences. However, little research has investigated inequalities in exposure to compound drought-heatwaves under climate change. Here, we reveal a significant disparity between low-income and high-income regions in terms of global compound drought-heatwave occurrence using observations and climate models. We find that low-income regions experienced a 377% [351–403%] increase in the frequency of compound drought-heatwaves from 1981 to 2020, which is twice as fast as the increase observed in high-income regions (184% [153–204%]). This inequality is largely attributed to a similar disparity in drought occurrence rather than heatwave occurrence. Climate change attribution suggests that anthropogenic warming has doubled the frequency of compound drought-heatwaves over 31% [14–50%] of low-income regions, compared to only 4.7% [0.9–8.3%] of high-income regions. The frequency of compound drought-heatwaves would not have increased in low-income regions without anthropogenic climate change but would still have risen in high-income regions. From 1981 to 2020, low-income regions experienced a faster increase in the frequency of compound drought-heatwaves events than high-income regions, and the increase is attributed to anthropogenic climate change, according to an analysis that uses climate models, drought index, and population data","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01894-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lightweight climate models could be useful for assessing aviation mitigation strategies and moving beyond the CO2-equivalence metrics debate 轻量级气候模型有助于评估航空减排战略和超越二氧化碳当量指标的争论
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-19 DOI: 10.1038/s43247-024-01888-5
Sara Arriolabengoa, Thomas Planès, Philippe Mattei, Daniel Cariolle, Scott Delbecq
{"title":"Lightweight climate models could be useful for assessing aviation mitigation strategies and moving beyond the CO2-equivalence metrics debate","authors":"Sara Arriolabengoa, Thomas Planès, Philippe Mattei, Daniel Cariolle, Scott Delbecq","doi":"10.1038/s43247-024-01888-5","DOIUrl":"10.1038/s43247-024-01888-5","url":null,"abstract":"Assessing mitigation strategies for aviation is a critical issue for the aviation stakeholders, while the debate continues on the most appropriate CO2-equivalence metrics to address non-CO2 effects. Here, we propose two lightweight climate models that can be parameterised to assess these strategies and move beyond the CO2-equivalence metrics debate. A first approach relies on the use of the GWP* method, while a second one uses the FaIR climate emulator. These lightweight models, which should be considered as a new family of climate models for aviation that facilitate parametric studies, provide a straightforward and consistent means of evaluating mitigation strategies at the temperature level, although they are still limited for informing policymakers due to the significant uncertainties involved. They bypass the need for CO2-equivalence metrics for comparing strategies. The latter should rather be used for other applications, such as policy mechanisms to encourage the emergence of strategies, as they are not suitable for assessing temperature changes from aviation. The debate on the choice of CO2-equivalence metrics could then focus on methodological and ethical criteria. However, this paper demonstrates that the higher the traffic, the more appropriate it is to choose CO2-equivalence metrics with high values for consistency with temperature estimates. The potential use of lightweight climate models for assessing mitigation strategies for aviation is highlighted, allowing to move beyond the CO2-equivalence metrics debate for these applications, according to the calibration and validation of two parametrisable methods.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-16"},"PeriodicalIF":8.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01888-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679949","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantification of record-breaking subsidence in California’s San Joaquin Valley 加州圣华金河谷破纪录的沉降量化
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-19 DOI: 10.1038/s43247-024-01778-w
M. Lees, R. Knight
{"title":"Quantification of record-breaking subsidence in California’s San Joaquin Valley","authors":"M. Lees, R. Knight","doi":"10.1038/s43247-024-01778-w","DOIUrl":"10.1038/s43247-024-01778-w","url":null,"abstract":"In California’s San Joaquin Valley, groundwater overdraft has caused dramatic and continued land subsidence during two main periods, 1925–1970 (“the historic period”) and post-2006. The impacts of the subsidence are severe, with modified flood risks, damaged aqueducts, and permanently altered aquifer dynamics. However, we do not have a complete record of the post-2006 subsidence due to a 2011–2015 gap in Valley-wide observations, and this makes it difficult to develop an appropriate management response. Here, we used satellite geodetic subsidence measurements to quantify the Valley-wide subsidence volume during 2006–2022. We found a total subsidence volume of 14 km3 over the 16 years, the same as was measured during 24 years of monitoring in the historic period. Considering the extraordinary 2006–2022 Valley-wide subsidence, we make high-level recommendations for subsidence mitigation, highlighting the importance of focusing groundwater overdraft reductions on the deeper aquifers where subsidence originates, and on localities where subsidence impacts are greatest. A remote-sensing based quantification of land subsidence in the San Joaquin Valley, California, finds that recent land subsidence has matched the totals recorded historically, and suggests limiting groundwater withdrawal from deeper parts of the aquifer system.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-12"},"PeriodicalIF":8.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01778-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Author Correction: Durability of carbon dioxide removal is critical for Paris climate goals 作者更正:二氧化碳清除的持久性对实现巴黎气候目标至关重要
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-18 DOI: 10.1038/s43247-024-01899-2
Cyril Brunner, Zeke Hausfather, Reto Knutti
{"title":"Author Correction: Durability of carbon dioxide removal is critical for Paris climate goals","authors":"Cyril Brunner, Zeke Hausfather, Reto Knutti","doi":"10.1038/s43247-024-01899-2","DOIUrl":"10.1038/s43247-024-01899-2","url":null,"abstract":"","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-1"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01899-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Embedding machine-learnt sub-grid variability improves climate model precipitation patterns 嵌入机器学习的子网格变异性可改善气候模型降水模式
IF 8.1 1区 地球科学
Communications Earth & Environment Pub Date : 2024-11-18 DOI: 10.1038/s43247-024-01885-8
Daniel Giles, James Briant, Cyril J. Morcrette, Serge Guillas
{"title":"Embedding machine-learnt sub-grid variability improves climate model precipitation patterns","authors":"Daniel Giles, James Briant, Cyril J. Morcrette, Serge Guillas","doi":"10.1038/s43247-024-01885-8","DOIUrl":"10.1038/s43247-024-01885-8","url":null,"abstract":"Parameterisation schemes within General Circulation Models are required to capture cloud processes and precipitation formation but exhibit long-standing known biases. Here, we develop a hybrid approach that tackles these biases by embedding a Multi-Output Gaussian Process trained to predict high resolution variability within each climate model grid box. The trained multi-output Gaussian Process model is coupled in-situ with a simplified Atmospheric General Circulation Model named SPEEDY. The temperature and specific humidity profiles of SPEEDY are perturbed at fixed intervals according to the variability predicted from the Gaussian Process. Ten-year predictions are generated for both control and machine learning hybrid models. The hybrid model reduces the global precipitation area-weighted root-mean squared error by up to 17% and over the tropics by up to 20%. Hybrid techniques have been known to introduce non-physical states therefore physical quantities are explored to ensure that climatic drift is not observed. Furthermore, to understand the drivers of the precipitation improvements the changes to thermodynamic profiles and the distribution of lifted index values are investigated. Hybrid machine learning techniques can improve the representation of precipitation biases, reducing global error by up to 17% and over the tropics by up to 20%, according to results from a Multi-Output Gaussian Process coupled with a simplified Atmospheric General Circulation Model named SPEEDY.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-11"},"PeriodicalIF":8.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01885-8.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信