Georgios A Kelesidis, Constantinos Moularas, Hooman Parhizkar, Leonardo Calderon, Irini Tsiodra, Nikolaos Mihalopoulos, Ilias Kavouras, Marios-Bruno Korras-Carraca, Nikolaos Hatzianastassiou, Panos G Georgopoulos, José G Cedeño Laurent, Philip Demokritou
{"title":"Radiative cooling in New York/New Jersey metropolitan areas by wildfire particulate matter emitted from the Canadian wildfires of 2023.","authors":"Georgios A Kelesidis, Constantinos Moularas, Hooman Parhizkar, Leonardo Calderon, Irini Tsiodra, Nikolaos Mihalopoulos, Ilias Kavouras, Marios-Bruno Korras-Carraca, Nikolaos Hatzianastassiou, Panos G Georgopoulos, José G Cedeño Laurent, Philip Demokritou","doi":"10.1038/s43247-025-02214-3","DOIUrl":null,"url":null,"abstract":"<p><p>Wildfire particulate matter from Canadian forest fires significantly impacted the air quality in the northeastern United States during the summer of 2023. Here, we used real-time and time-integrated instrumentation to characterize the physicochemical properties and radiative effects of wildfire particulate matter reaching the metropolitan areas of New Jersey/ New York during this extreme incident. The radiative forcing of -352.4 W/m<sup>2</sup> derived here based on the measured optical properties of wildfire particulate matter explains, to some extent, the ground level temperature reduction of about 3 °C observed in New Jersey/ New York City during this incident. Such negative radiative forcing in densely populated megacities may limit natural ventilation, increase the residence time of wildfire particulate matter and background air pollutants, exacerbating public health risks. This study highlights the importance of radiative effects from wildfire particulate matter in densely populated areas and their potential implications for climate, air quality and public health.</p>","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":"6 1","pages":"304"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12011623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1038/s43247-025-02214-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Wildfire particulate matter from Canadian forest fires significantly impacted the air quality in the northeastern United States during the summer of 2023. Here, we used real-time and time-integrated instrumentation to characterize the physicochemical properties and radiative effects of wildfire particulate matter reaching the metropolitan areas of New Jersey/ New York during this extreme incident. The radiative forcing of -352.4 W/m2 derived here based on the measured optical properties of wildfire particulate matter explains, to some extent, the ground level temperature reduction of about 3 °C observed in New Jersey/ New York City during this incident. Such negative radiative forcing in densely populated megacities may limit natural ventilation, increase the residence time of wildfire particulate matter and background air pollutants, exacerbating public health risks. This study highlights the importance of radiative effects from wildfire particulate matter in densely populated areas and their potential implications for climate, air quality and public health.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.