{"title":"Scalable deoxygenative alkynylation of alcohols via flow photochemistry","authors":"Pin Xu, Cong Ma","doi":"10.1038/s42004-024-01363-4","DOIUrl":"10.1038/s42004-024-01363-4","url":null,"abstract":"Internal alkynes are often contained in bioactive pharmaceuticals and crucial intermediates in material sciences, yet their production methods are often limited and challenging, necessitating the development of more efficient and versatile synthetic routes. Here we report a method of deoxygenative alkynylation of alcohols via flow photochemistry. Formation of N-heterocyclic carbene-alcohol adducts undergoes oxidation by a photocatalyst, generating alkyl radicals. These radicals are subsequently trapped by an alkynylation agent, yielding the desired alkyne. Compared to batch reactions, the strategy using flow photochemistry is practical and efficient to complete the reaction in relatively short time with good yields. A wide range of functional groups were tolerated. The broad application of this method for alkyne synthesis in industry settings is anticipated, supported by the potential in late-stage functionalization of biomolecules and gram-scale synthesis. Internal alkynes are often contained in bioactive pharmaceuticals and crucial intermediates in materials science, yet their production methods are often limited and challenging. Here, the authors develop a practical and efficient method for the visible-light-promoted deoxygenative alkynylation of alcohols via flow photochemistry, utilizing N-heterocyclic carbenes to activate alcohols.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-8"},"PeriodicalIF":5.9,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11599925/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lorraine Leon, Guillermo Monreal Santiago, Evan Spruijt
{"title":"Coacervation in systems chemistry","authors":"Lorraine Leon, Guillermo Monreal Santiago, Evan Spruijt","doi":"10.1038/s42004-024-01358-1","DOIUrl":"10.1038/s42004-024-01358-1","url":null,"abstract":"Communications Chemistry is delighted to introduce a Collection of articles that combine coacervation with systems chemistry. Here, the Guest Editors of the Collection introduce the importance of research at the interface between these two topics and highlight the current challenges in this area.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-2"},"PeriodicalIF":5.9,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01358-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolò Bassi, Xiushang Xu, Feifei Xiang, Nils Krane, Carlo A. Pignedoli, Akimitsu Narita, Roman Fasel, Pascal Ruffieux
{"title":"Preferential graphitic-nitrogen formation in pyridine-extended graphene nanoribbons","authors":"Nicolò Bassi, Xiushang Xu, Feifei Xiang, Nils Krane, Carlo A. Pignedoli, Akimitsu Narita, Roman Fasel, Pascal Ruffieux","doi":"10.1038/s42004-024-01344-7","DOIUrl":"10.1038/s42004-024-01344-7","url":null,"abstract":"Graphene nanoribbons (GNRs), nanometer-wide strips of graphene, have garnered significant attention due to their tunable electronic and magnetic properties arising from quantum confinement. A promising approach to manipulate their electronic characteristics involves substituting carbon with heteroatoms, such as nitrogen, with different effects predicted depending on their position. In this study, we present the extension of the edges of 7-atom-wide armchair graphene nanoribbons (7-AGNRs) with pyridine rings, achieved on a Au(111) surface via on-surface synthesis. High-resolution structural characterization confirms the targeted structure, showcasing the predominant formation of carbon-nitrogen (C-N) bonds (over 90% of the units) during growth. This favored bond formation pathway is elucidated and confirmed through density functional theory (DFT) simulations. Furthermore, an analysis of the electronic properties reveals metallic behavior due to charge transfer to the Au(111) substrate accompanied by the presence of nitrogen-localized states. Our results underscore the successful formation of C-N bonds on the metal surface, providing insights for designing new GNRs that incorporate substitutional nitrogen atoms to precisely control their electronic properties. The presence of graphitic nitrogen atoms within graphene nanoribbons has been predicted to strongly affect their electronic properties, but its experimental formation within such structures remains challenging. Here, the authors report on the on-surface synthesis of pyridine-extended 7-armchair graphene nanoribbons on Au(111), whereby graphitic nitrogen is preferentially formed after complete planarization through the formation of C–N bonds.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-9"},"PeriodicalIF":5.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01344-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Meng-Jun Xie, Xuan Li, Xin-Xin Li, Li-Hua Wen, Shu-Li Xie, Ke-Wei Zhang, Ya-Nan Duan, Yao Zhang, Dong Li, Hai-Dong Xia
{"title":"Feedstock chemical dichloromethane as the C1 source for the chemoselective multicomponent synthesis of valuable 1,4,2-dioxazoles","authors":"Meng-Jun Xie, Xuan Li, Xin-Xin Li, Li-Hua Wen, Shu-Li Xie, Ke-Wei Zhang, Ya-Nan Duan, Yao Zhang, Dong Li, Hai-Dong Xia","doi":"10.1038/s42004-024-01364-3","DOIUrl":"10.1038/s42004-024-01364-3","url":null,"abstract":"The development of mild and practical strategies to produce value-added fine chemicals directly from inexpensive and readily available commodity chemicals is actively pursued by chemists. However, the application of feedstock chemical dichloromethane (DCM) as the C1 source in organic synthesis is still in its infancy. Herein, we describe a multicomponent strategy for the chemoselective synthesis of valuable 1,4,2-dioxazoles by using DCM as a C1 source. Critical to the success of this process is tuning of the type of nucleophiles to inhibit the easily-occurring side reactions. This approach features mild and simple conditions, excellent chemoselectivity, metal free, and broad substrate scope covering different types of nucleophiles. Furthermore, its synthetic utility is further demonstrated by the preparation of deuterated 1,4,2-dioxazoles, the late-stage functionalization of complex molecules and large-scale synthesis. Preliminary mechanistic studies indicate the dual roles of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as both a proton scavenger and a nucleophilic catalyst. This work provides not only a platform for DCM application, but also an excellent complementary strategy to the established 1,4,2-dioxazoles synthesis. The development of mild and practical strategies to produce value-added fine chemicals directly from inexpensive and readily available commodity chemicals is actively pursued by chemists, however, the application of feedstock chemical dichloromethane (DCM) as the C1 source in organic synthesis is still in its infancy. Here, the authors describe a multicomponent strategy for the chemoselective synthesis of valuable 1,4,2-dioxazoles by using DCM as a C1 source.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-6"},"PeriodicalIF":5.9,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01364-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Suitability of rocks, minerals, and cement waste for CO2 removal via enhanced rock weathering","authors":"Megan Danczyk, Christopher Oze","doi":"10.1038/s42004-024-01361-6","DOIUrl":"10.1038/s42004-024-01361-6","url":null,"abstract":"Mineral and rock additions to the environment have been proposed as a pathway to remove atmospheric CO2. This process occurs when hydrated minerals or rocks increase alkalinity, promoting the formation of bicarbonate. In this study, we evaluate the potential of commonly used hydrated rock and mineral powders to enhance alkalinity and react with both atmospheric and concentrated CO2. Silicate minerals and rocks exhibit minimal reactivity with atmospheric CO2 and provide moderate alkalinity enhancement. Volcanic rocks like basalt were shown to release CO2. Ground cement and Mg(OH)2, refined from CO2-free ultramafic rock, significantly increase alkalinity and mineralize both atmospheric and concentrated CO2. However, the effectiveness of cement waste is limit by its variable CaO content and potential heavy metal contributions. Overall, Mg(OH)2, derived from silicates, offers a promising pathway for the removal and storage of CO2. CO2 capture through enhanced rock weathering requires that rock and mineral soil additions promote CO2 to bicarbonate transformation, typically by increasing substrate alkalinity. Here, the authors evaluate the potential of commonly used hydrated rock and mineral powders such as cement waste to enhance alkalinity and react with both atmospheric and concentrated CO2.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-7"},"PeriodicalIF":5.9,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01361-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142679973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Satyaveni Malasala, Fereshteh Azimian, Yan-Hua Chen, Jeffery L. Twiss, Christi Boykin, Shayan Nik Akhtar, Qun Lu
{"title":"Enabling systemic identification and functionality profiling for Cdc42 homeostatic modulators","authors":"Satyaveni Malasala, Fereshteh Azimian, Yan-Hua Chen, Jeffery L. Twiss, Christi Boykin, Shayan Nik Akhtar, Qun Lu","doi":"10.1038/s42004-024-01352-7","DOIUrl":"10.1038/s42004-024-01352-7","url":null,"abstract":"Maintaining body homeostasis is the ultimate key to health. There are rich resources of bioactive materials for the functionality of homeostatic modulators (HMs) from both natural and synthetic chemical repertories1–3. HMs are powerful modern therapeutics for human diseases including neuropsychiatric diseases, mental disorders, and drug addiction (e.g. Buspirone and benzodiazepines)4–7. However, the identification of therapeutic HMs are often unpredictable and limited to membrane protein receptors and ion channels. Based on a serendipitously encountered small molecule ZCL278 with partial agonist (PA) profile as a model compound8–10, the Mant-GTP fluorophore-based Cdc42-GEF (guanine nucleotide exchange factor) screening uncovered a near holistic spectrum of HMs for Cdc42, a cytoplasmic small GTPase in the Ras superfamily11,12. We categorized these HMs as functionally distinct, with some previously understudied classes: Class I-competitive PAs, Class II-hormetic agonists, Class III-bona fide inhibitors, Class IV-bona fide activators, and Class V-ligand-enhanced agonists. The model HMs elicited striking biological functionalities in modulating bradykinin activation of Cdc42 signaling as well as actin remodeling while they ameliorated Alzheimer’s disease-like social behavior in mouse model. Furthermore, molecular structural modeling analyses led to the concept of preferential binding pocket order (PBPO) for profiling HMs that target Cdc42 complexed with intersectin (ITSN), a GEF selectively activating Cdc42. Remarkably, the PBPO enabled a prediction of HM class that mimics the pharmacological functionality. Therefore, our study highlights a model path to actively capture different classes of HM to broaden therapeutic landscape. Homeostatic modulators (HMs) are powerful modern therapeutics for human diseases including neuropsychiatric diseases, mental disorders, and drug addiction; however, their discovery is often unpredictable and limited to membrane protein receptors and ion channels. Here, the authors analyze a spectrum of novel HMs for Cdc42, a cytoplasmic small GTPase in the Ras superfamily, with striking biological functionalities and potential therapeutic applications.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-11"},"PeriodicalIF":5.9,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01352-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shortcut to chemically accurate quantum computing via density-based basis-set correction","authors":"Diata Traore, Olivier Adjoua, César Feniou, Ioanna-Maria Lygatsika, Yvon Maday, Evgeny Posenitskiy, Kerstin Hammernik, Alberto Peruzzo, Julien Toulouse, Emmanuel Giner, Jean-Philip Piquemal","doi":"10.1038/s42004-024-01348-3","DOIUrl":"10.1038/s42004-024-01348-3","url":null,"abstract":"Using GPU-accelerated state-vector emulation, we propose to embed a quantum computing ansatz into density-functional theory via density-based basis-set corrections to obtain quantitative quantum-chemistry results on molecules that would otherwise require brute-force quantum calculations using hundreds of logical qubits. Indeed, accessing a quantitative description of chemical systems while minimizing quantum resources is an essential challenge given the limited qubit capabilities of current quantum processors. We provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget. The resulting approach self-consistently accelerates the basis-set convergence, improving electronic densities, ground-state energies, and first-order properties (e.g. dipole moments), but can also serve as a classical, a posteriori, energy correction to quantum hardware calculations with expected applications in drug design and materials science. Quantum computing offers a promising approach to solving electronic-structure problems, but a quantitative description of chemical systems while minimizing computing resources is an essential challenge. Here, the authors provide a shortcut towards chemically accurate quantum computations by approaching the complete-basis-set limit through coupling the density-based basis-set corrections approach, applied to any given variational ansatz, to an on-the-fly crafting of basis sets specifically adapted to a given system and user-defined qubit budget.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-13"},"PeriodicalIF":5.9,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01348-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuming Su, Guangming Wang, Boyi Fu, Xixi Piao, Kaka Zhang
{"title":"A biomimetic phosphor that can build a rigid microenvironment for its long-lived afterglow in aqueous medium","authors":"Yuming Su, Guangming Wang, Boyi Fu, Xixi Piao, Kaka Zhang","doi":"10.1038/s42004-024-01347-4","DOIUrl":"10.1038/s42004-024-01347-4","url":null,"abstract":"Organic phosphorescent materials have great prospects for application, whose performance particularly depends on the preparation method. Inspired by nature’s wisdom, we report a phosphor that can utilize monomers in its environment by polymerization to construct a rigid microenvironment under light illumination, leading to a glow-in-the-dark emulsion with a phosphorescence lifetime of 1 s in water. This phosphor can achieve active growth of the aqueous emulsion with the introduction of more monomers. In the presence of trace amounts of oxygen (which has adverse effects on both polymerization and afterglow), this phosphor can still undergo photo-induced polymerization, removing the influence of oxygen and obtaining afterglow emulsion, demonstrating its adaptability to the environment. This phosphor can also catalyze the polymerization of monomers containing yellow fluorophore, obtaining long-lifetime yellow afterglow emulsion through excited state energy transfer. We have also conducted in-depth studies on the photo-catalytic and phosphorescent properties of this phosphor in model systems. This biomimetic intelligent manufacturing provides a new approach for organic phosphorescent materials and is significant for future applications. Organic afterglow materials show great potential in diverse applications, and their performance particularly depends on their method of preparation. Here, the authors report a biomimetic phosphor that builds a rigid microenvironment to restrain non-radiative decay of triplet excitons, achieving long-lived organic afterglow in water.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-10"},"PeriodicalIF":5.9,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01347-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Leveraging infrared spectroscopy for automated structure elucidation","authors":"Marvin Alberts, Teodoro Laino, Alain C. Vaucher","doi":"10.1038/s42004-024-01341-w","DOIUrl":"10.1038/s42004-024-01341-w","url":null,"abstract":"The application of machine learning models in chemistry has made remarkable strides in recent years. While analytical chemistry has received considerable interest from machine learning practitioners, its adoption into everyday use remains limited. Among the available analytical methods, Infrared (IR) spectroscopy stands out in terms of affordability, simplicity, and accessibility. However, its use has been limited to the identification of a selected few functional groups, as most peaks lie beyond human interpretation. We present a transformer model that enables chemists to leverage the complete information contained within an IR spectrum to directly predict the molecular structure. To cover a large chemical space, we pretrain the model using 634,585 simulated IR spectra and fine-tune it on 3,453 experimental spectra. Our approach achieves a top–1 accuracy of 44.4% and top–10 accuracy of 69.8% on compounds containing 6 to 13 heavy atoms. When solely predicting scaffolds, the model accurately predicts the top–1 scaffold in 84.5% and among the top–10 in 93.0% of cases. Infrared spectroscopy stands out as an analytical tool for its affordability, simplicity, and accessibility, however, its use has been limited to the identification of a select few functional groups, as most peaks lie beyond human interpretation. Here, the authors use a transformer model that enables chemists to leverage all information contained within an IR spectrum to directly predict the molecular structure.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-11"},"PeriodicalIF":5.9,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01341-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142643905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lijuan Zhang, Ning Qi, Yuan Li, Xiao Wang, Lifei Zhang
{"title":"Immiscible metamorphic water and methane fluids preserved in carbonated eclogite","authors":"Lijuan Zhang, Ning Qi, Yuan Li, Xiao Wang, Lifei Zhang","doi":"10.1038/s42004-024-01355-4","DOIUrl":"10.1038/s42004-024-01355-4","url":null,"abstract":"Subduction zones metamorphic fluids are pivotal in geological events such as volcanic eruptions, seismic activity, mineralization, and the deep carbon cycle. However, the mechanisms governing carbon mobility in subduction zones remain largely unresolved. Here we present the first observations of immiscible H2O-CH4 fluids coexisting in retrograde carbonated eclogite from the Western Tianshan subduction zone, China. We identified two types of fluid inclusions in host ankerite and amphibole, as well as in garnet and omphacite. Type-1 inclusions are water-rich with CH4 vapor, whereas Type-2 are CH4-rich, with minimal or no H2O. The coexistence of these fluid types indicates the presence of immiscible fluid phases under high-pressure conditions (P = 1.3-2.1 GPa). Carbonates in subduction zones can effectively decompose through reactions with silicates, leading to the generation of abiotic CH4. Our findings suggest that substantial amounts of carbon could be transferred from the slab to mantle wedge as immiscible CH4 fluids. This process significantly enhances decarbonation efficiency and may contribute to the formation of natural gas deposits. The metamorphic fluids in subduction zone play a crucial role in geological events such as volcanic eruptions, seismic activity, mineralization and the deep carbon cycle. Here, the authors report on the coexistence of immiscible water and methane fluids in retrograde carbonated eclogite and identify two types of fluid inclusions in different host minerals, advancing our understanding of immiscible C-O-H fluids and their upwards migration in subducting slabs.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-10"},"PeriodicalIF":5.9,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01355-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}