Systematic variation of the acceptor electrophilicity in donor-acceptor-donor emitters exhibiting efficient room temperature phosphorescence suited for digital luminescence.
Uliana Tsiko, Jannis Fidelius, Sebastian Kaiser, Heidi Thomas, Yana Bui Thi, Jan J Weigand, Juozas V Grazulevicius, Karl Sebastian Schellhammer, Sebastian Reineke
{"title":"Systematic variation of the acceptor electrophilicity in donor-acceptor-donor emitters exhibiting efficient room temperature phosphorescence suited for digital luminescence.","authors":"Uliana Tsiko, Jannis Fidelius, Sebastian Kaiser, Heidi Thomas, Yana Bui Thi, Jan J Weigand, Juozas V Grazulevicius, Karl Sebastian Schellhammer, Sebastian Reineke","doi":"10.1038/s42004-025-01620-0","DOIUrl":null,"url":null,"abstract":"<p><p>Purely organic materials showing efficient and persistent emission via room temperature phosphorescence (RTP) allow the design of minimalistic yet powerful technological solutions for sensing, bioimaging, information storage, and safety applications using the photonic design principle of digital luminescence. Although several promising materials exist, a deep understanding of the underlying structure-property relationship and, thus, development of rational design strategies are widely missing. Some of the best purely organic emitters follow the donor-acceptor-donor design motif. In this study, the influence of the acceptor unit on the photophysical properties is systematically analyzed by synthesizing and characterizing variations of the RTP emitter 4,4'-dithianthrene-1-yl-benzophenone (BP-2TA). The most promising candidates are also tested in programmable luminescent tags as a potential application field for information storage. While no significant influence by the electrophilicity index of the acceptor moiety on the RTP emission is observed, the results support the design of molecules with pronounced hybridization as obtained for the newly synthesized emitter demonstrating superior RTP efficiency combined with improved stability.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"274"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423317/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01620-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purely organic materials showing efficient and persistent emission via room temperature phosphorescence (RTP) allow the design of minimalistic yet powerful technological solutions for sensing, bioimaging, information storage, and safety applications using the photonic design principle of digital luminescence. Although several promising materials exist, a deep understanding of the underlying structure-property relationship and, thus, development of rational design strategies are widely missing. Some of the best purely organic emitters follow the donor-acceptor-donor design motif. In this study, the influence of the acceptor unit on the photophysical properties is systematically analyzed by synthesizing and characterizing variations of the RTP emitter 4,4'-dithianthrene-1-yl-benzophenone (BP-2TA). The most promising candidates are also tested in programmable luminescent tags as a potential application field for information storage. While no significant influence by the electrophilicity index of the acceptor moiety on the RTP emission is observed, the results support the design of molecules with pronounced hybridization as obtained for the newly synthesized emitter demonstrating superior RTP efficiency combined with improved stability.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.