Aini Vuorinen, Cassandra R Kennedy, Katherine A McPhie, William McCarthy, Jonathan Pettinger, J Mark Skehel, David House, Jacob T Bush, Katrin Rittinger
{"title":"Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation.","authors":"Aini Vuorinen, Cassandra R Kennedy, Katherine A McPhie, William McCarthy, Jonathan Pettinger, J Mark Skehel, David House, Jacob T Bush, Katrin Rittinger","doi":"10.1038/s42004-025-01410-8","DOIUrl":"10.1038/s42004-025-01410-8","url":null,"abstract":"<p><p>Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs. Applying these approaches, we identify an enantioselective covalent fragment for OTUD7B, and validate it using chemoproteomics and biochemical DUB activity assays.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"12"},"PeriodicalIF":5.9,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11732987/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Human interpretable structure-property relationships in chemistry using explainable machine learning and large language models.","authors":"Geemi P Wellawatte, Philippe Schwaller","doi":"10.1038/s42004-024-01393-y","DOIUrl":"10.1038/s42004-024-01393-y","url":null,"abstract":"<p><p>Explainable Artificial Intelligence (XAI) is an emerging field in AI that aims to address the opaque nature of machine learning models. Furthermore, it has been shown that XAI can be used to extract input-output relationships, making them a useful tool in chemistry to understand structure-property relationships. However, one of the main limitations of XAI methods is that they are developed for technically oriented users. We propose the XpertAI framework that integrates XAI methods with large language models (LLMs) accessing scientific literature to generate accessible natural language explanations of raw chemical data automatically. We conducted 5 case studies to evaluate the performance of XpertAI. Our results show that XpertAI combines the strengths of LLMs and XAI tools in generating specific, scientific, and interpretable explanations.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"11"},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733140/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Local structure of amorphous sulfur in carbon-sulfur composites for all-solid-state lithium-sulfur batteries.","authors":"Hiroshi Yamaguchi, Yu Ishihara, Yamato Haniu, Atsushi Sakuda, Akitoshi Hayashi, Kentaro Kobayashi, Satoshi Hiroi, Hiroki Yamada, Jo-Chi Tseng, Seiya Shimono, Koji Ohara","doi":"10.1038/s42004-025-01408-2","DOIUrl":"10.1038/s42004-025-01408-2","url":null,"abstract":"<p><p>All-solid-state (ASS) batteries are a promising solution to achieve carbon neutrality. ASS lithium-sulfur (Li-S) batteries stand out due to their improved safety, achieved by replacing organic solvents, which are prone to leakage and fire, with solid electrolytes. In addition, these batteries offer the benefits of higher capacity and the absence of rare metals. However, the low electronic conductivity of sulfur poses a major challenge for ASS Li-S batteries. To address this challenge, sulfur is often combined with porous carbon. Despite this standard practice, the local structure of sulfur in these composites remains unclear. Based on small-angle X-ray scattering and pair distribution function analysis, we discovered that sulfur in carbon-sulfur composites formed via melt diffusion is amorphous and primarily comprises S<sub>8</sub> ring-shaped structures. The carbon-sulfur composite demonstrated a high specific capacity of 1625 mAh g<sup>-1</sup> (97% of the theoretical specific capacity of sulfur). This remarkable performance is attributed to the extensive contact area between carbon and sulfur, which results in an excellent interface formed through melt diffusion. The insights gained into the local structure of sulfur and the analytical approaches employed enhanced our understanding of electrochemical reactions in ASS Li-S batteries, thereby aiding in the optimization of material design.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"10"},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733239/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142982976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biosynthesis of lactacystin as a proteasome inhibitor.","authors":"Takeshi Tsunoda, Shunkichi Furumura, Haruka Yamazaki, Chitose Maruyama, Yoshimitsu Hamano, Yasushi Ogasawara, Tohru Dairi","doi":"10.1038/s42004-025-01406-4","DOIUrl":"10.1038/s42004-025-01406-4","url":null,"abstract":"<p><p>Lactacystin is an irreversible proteasome inhibitor isolated from Streptomyces lactacystinicus. Despite its importance for its biological activity, the biosynthesis of lactacystin remains unknown. In this study, we identified the lactacystin biosynthetic gene cluster by gene disruption and heterologous expression experiments. We also examined the functions of the genes encoding a PKS/NRPS hybrid protein (LctA), NRPS (LctB), ketosynthase-like cyclase (LctC), cytochrome P450 (LctD), MbtH-like protein (LctE), and formyltransferase (LctF) by in vivo and in vitro experiments. In particular, we demonstrated that LctF directly transferred the formyl group of 10-N-formyl tetrahydrofolate to CoA. The formyl group of formyl-CoA was then transferred to ACP1 by LctA_AT1 to form formyl-ACP1. This is the first example of an AT domain recognizing a formyl group. The formyl group is perhaps transferred to methylmalonate tethered on LctA_ACP2 to yield methylmalonyl-semialdehyde-ACP2. Then, it would be condensed with leucine bound to PCP in LctB by the C domain in LctA. Using a mimic compound, we confirmed that LctC catalyzed the formation of the cyclic α,α-disubstituted amino acid structure with concomitant release of the product from PCP. Thus, we figured out the overall biosynthesis of lactacystin including a novel role of a formyl group in a secondary metabolite.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"9"},"PeriodicalIF":5.9,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730586/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142977960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Malcolm Garrow, Lauren Bertram, Abi Winter, Andrew W Prentice, Stuart W Crane, Paul D Lane, Stuart J Greaves, Martin J Paterson, Adam Kirrander, Dave Townsend
{"title":"Excited state dynamics of azanaphthalenes reveal opportunities for the rational design of photoactive molecules.","authors":"Malcolm Garrow, Lauren Bertram, Abi Winter, Andrew W Prentice, Stuart W Crane, Paul D Lane, Stuart J Greaves, Martin J Paterson, Adam Kirrander, Dave Townsend","doi":"10.1038/s42004-024-01403-z","DOIUrl":"10.1038/s42004-024-01403-z","url":null,"abstract":"<p><p>Various photoactive molecules contain motifs built on aza-aromatic heterocycles, although a detailed understanding of the excited state photophysics and photochemistry in such systems is not fully developed. To help address this issue, the non-adiabatic dynamics operating in azanaphthalenes under hexane solvation was studied following 267 nm excitation using ultrafast transient absorption spectroscopy. Specifically, the species quinoline, isoquinoline, quinazoline, quinoxaline, 1,6-naphthyridine, and 1,8-naphthyridine were investigated, providing a systematic variation in the relative positioning of nitrogen heteroatom centres within a bicyclic aromatic structure. Our results indicate considerable differences in excited state lifetimes, and in the propensity for intersystem crossing vs internal conversion across the molecular series. The overall pattern of behaviour can be explained in terms of potential energy barriers and spin-orbit coupling effects, as demonstrated by extensive quantum chemistry calculations undertaken at the SCS-ADC(2) level of theory. The fact that quantum chemistry calculations can achieve such detailed and nuanced agreement with experimental data across a full set of six molecules exhibiting subtle variations in their composition provides an excellent example of the current state-of-the-art and is indicative of future opportunities for rational design of photoactive molecules.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"7"},"PeriodicalIF":5.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11717923/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Govind Ummethala, Ravi Jada, Shourya Dutta-Gupta, Junbeom Park, Amir H Tavabi, Shibabrata Basak, Robert Hooley, Hongyu Sun, H Hugo Pérez Garza, Rüdiger-A Eichel, Rafal E Dunin-Borkowski, Sai Rama Krishna Malladi
{"title":"Real-time visualisation of fast nanoscale processes during liquid reagent mixing by liquid cell transmission electron microscopy.","authors":"Govind Ummethala, Ravi Jada, Shourya Dutta-Gupta, Junbeom Park, Amir H Tavabi, Shibabrata Basak, Robert Hooley, Hongyu Sun, H Hugo Pérez Garza, Rüdiger-A Eichel, Rafal E Dunin-Borkowski, Sai Rama Krishna Malladi","doi":"10.1038/s42004-025-01407-3","DOIUrl":"10.1038/s42004-025-01407-3","url":null,"abstract":"<p><p>Liquid cell transmission electron microscopy (LCTEM) is a powerful technique for investigating crystallisation dynamics with nanometre spatial resolution. However, probing phenomena occurring in liquids while mixing two precursor solutions has proven extremely challenging, requiring sophisticated liquid cell designs. Here, we demonstrate that introducing and withdrawing solvents in sequence makes it possible to maintain optimal imaging conditions while mixing liquids in a commercial liquid cell. We succeeded in visualising a fast nanoscale crystallisation mechanism when an organic molecule of R-BINOL-CN dissolved in chloroform interacts with methanol. The scanning transmission electron microscopy images recorded in real-time during the interaction of the two volatile solvents reveal the formation of chain-like structures of R-BINOL-CN particles, whereas they coalesce to form single large particles when methanol is absent. Our approach of mixing liquids establishes a platform for novel LCTEM studies of a wide range of electron-beam-sensitive materials, including drug molecules, polymers and molecular amphiphiles.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"8"},"PeriodicalIF":5.9,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718259/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julien Orlans, Samuel L Rose, Gavin Ferguson, Marcus Oscarsson, Alejandro Homs Puron, Antonia Beteva, Samuel Debionne, Pascal Theveneau, Nicolas Coquelle, Jerome Kieffer, Paolo Busca, Jeremy Sinoir, Victor Armijo, Marcos Lopez Marrero, Franck Felisaz, Gergely Papp, Herve Gonzalez, Hugo Caserotto, Fabien Dobias, Jonathan Gigmes, Guillaume Lebon, Shibom Basu, Daniele de Sanctis
{"title":"Advancing macromolecular structure determination with microsecond X-ray pulses at a 4th generation synchrotron.","authors":"Julien Orlans, Samuel L Rose, Gavin Ferguson, Marcus Oscarsson, Alejandro Homs Puron, Antonia Beteva, Samuel Debionne, Pascal Theveneau, Nicolas Coquelle, Jerome Kieffer, Paolo Busca, Jeremy Sinoir, Victor Armijo, Marcos Lopez Marrero, Franck Felisaz, Gergely Papp, Herve Gonzalez, Hugo Caserotto, Fabien Dobias, Jonathan Gigmes, Guillaume Lebon, Shibom Basu, Daniele de Sanctis","doi":"10.1038/s42004-024-01404-y","DOIUrl":"https://doi.org/10.1038/s42004-024-01404-y","url":null,"abstract":"<p><p>Serial macromolecular crystallography has become a powerful method to reveal room temperature structures of biological macromolecules and perform time-resolved studies. ID29, a flagship beamline of the ESRF 4th generation synchrotron, is the first synchrotron beamline in the world capable of delivering high brilliance microsecond X-ray pulses at high repetition rate for the structure determination of biological macromolecules at room temperature. The cardinal combination of microsecond exposure times, innovative beam characteristics and adaptable sample environment provides high quality complete data, even from an exceptionally small amount of crystalline material, enabling what we collectively term serial microsecond crystallography (SµX). After validating the use of different sample delivery methods with various model systems, we applied SµX to an integral membrane receptor, where only a few thousands diffraction images were sufficient to obtain a fully interpretable electron density map for the antagonist istradefylline-bound A<sub>2A</sub> receptor conformation, providing access to the antagonist binding mode. SµX, as demonstrated at ID29, will quickly find its broad applicability at upcoming 4th generation synchrotron sources worldwide and opens a new frontier in time-resolved SµX.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"6"},"PeriodicalIF":5.9,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E F Warner, D Guneri, M A O'Connell, C J MacDonald, Z A E Waller
{"title":"Modulation of Nrf2 expression by targeting i-motif DNA.","authors":"E F Warner, D Guneri, M A O'Connell, C J MacDonald, Z A E Waller","doi":"10.1038/s42004-024-01387-w","DOIUrl":"https://doi.org/10.1038/s42004-024-01387-w","url":null,"abstract":"<p><p>Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of cell detoxification, which maintains homoeostasis in healthy cells and promotes chemoresistance in cancer cells. Controlling the expression of this transcription factor is therefore of great interest. There are many compounds that have been shown to induce Nrf2 expression, but ligands that can inhibit Nrf2 are scant. Herein we characterise an i-motif-forming sequence downstream of the Nrf2 promoter, which we hypothesised may regulate the expression of the gene. The Nrf2 i-motif was found to be stable at near-physiological conditions. We identified small molecule ligands that interact with this i-motif structure and one significantly upregulated Nrf2 mRNA expression, and one ligand reduced Nrf2 mRNA expression in human cancer cells. This is the first example of controlling the promoter of Nrf2 by targeting DNA structures and offers an alternative mode of action for the development of compounds to improve the chemotherapeutic responsiveness of existing treatments for cancer.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"5"},"PeriodicalIF":5.9,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142945909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unveiling the power of language models in chemical research question answering.","authors":"Xiuying Chen, Tairan Wang, Taicheng Guo, Kehan Guo, Juexiao Zhou, Haoyang Li, Zirui Song, Xin Gao, Xiangliang Zhang","doi":"10.1038/s42004-024-01394-x","DOIUrl":"https://doi.org/10.1038/s42004-024-01394-x","url":null,"abstract":"<p><p>While the abilities of language models are thoroughly evaluated in areas like general domains and biomedicine, academic chemistry remains less explored. Chemical QA tools also play a crucial role in both education and research by effectively translating complex chemical information into an understandable format. Addressing this gap, we introduce ScholarChemQA, a large-scale QA dataset constructed from chemical papers. Specifically, the questions are from paper titles with a question mark, and the multi-choice answers are reasoned out based on the corresponding abstracts. This dataset reflects typical real-world challenges, including an imbalanced data distribution and a substantial amount of unlabeled data that can be potentially useful. Correspondingly, we introduce a ChemMatch model, specifically designed to effectively answer chemical questions by fully leveraging our collected data. Experiments show that Large Language Models (LLMs) still have significant room for improvement in the field of chemistry. Moreover, ChemMatch significantly outperforms recent similar-scale baselines: https://github.com/iriscxy/chemmatch .</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"4"},"PeriodicalIF":5.9,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929966","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An ultrafast algorithm for ultrafast time-resolved coherent Raman spectroscopy.","authors":"Francesco Mazza, Dirk van den Bekerom","doi":"10.1038/s42004-024-01397-8","DOIUrl":"10.1038/s42004-024-01397-8","url":null,"abstract":"<p><p>Time-resolved coherent Raman spectroscopy (CRS) is a powerful non-linear optical technique for quantitative, in-situ analysis of chemically reacting flows, offering unparalleled accuracy and exceptional spatiotemporal resolution. Its application to large polyatomic molecules, crucial for understanding reaction dynamics, has thus far been limited by the complexity of their rotational-vibrational Raman spectra. Progress in developing comprehensive spectral codes for these molecules, a longstanding goal, has been hindered by prohibitively long computation times required for their spectral synthesis. Here, we present an algorithm that achieves a million-fold improvement in computation time compared to existing methods. The algorithm demonstrates remarkable accuracy, with an approximation error below 0.1% across all tested probe delays, at both room temperature (296 K) and elevated temperatures (1500 K). This result could greatly expand the application of time-resolved CRS, particularly in plasma research, as well as in broader atmospheric and astrophysical sciences.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"3"},"PeriodicalIF":5.9,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}