Communications Chemistry最新文献

筛选
英文 中文
Women in chemistry: Q&A with Professor Hyunjoo Lee 化学界的女性与 Hyunjoo Lee 教授的问答
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-25 DOI: 10.1038/s42004-024-01291-3
{"title":"Women in chemistry: Q&A with Professor Hyunjoo Lee","authors":"","doi":"10.1038/s42004-024-01291-3","DOIUrl":"10.1038/s42004-024-01291-3","url":null,"abstract":"Prof. Hyunjoo Lee is a Full Professor in the Department of Chemical and Biomolecular Engineering at the Korea Advanced Institute of Science & Technology (KAIST), Korea, and a KAIST Endowed Chair Professor. She also serves as the Director of the Heterogeneous Atomic Catalysts Research Center.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-2"},"PeriodicalIF":5.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01291-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Women in chemistry: Q&A with Dr. Stefanie Flohr 化学界的女性与 Stefanie Flohr 博士的问答
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-25 DOI: 10.1038/s42004-024-01290-4
{"title":"Women in chemistry: Q&A with Dr. Stefanie Flohr","authors":"","doi":"10.1038/s42004-024-01290-4","DOIUrl":"10.1038/s42004-024-01290-4","url":null,"abstract":"Dr. Stefanie Flohr serves as an Associate Director at Novartis Biomedical Research in Basel, Switzerland.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-2"},"PeriodicalIF":5.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01290-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Women in chemistry: Q&A with Dr Janelle Sauvageau 化学界的女性与 Janelle Sauvageau 博士的问答
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-25 DOI: 10.1038/s42004-024-01277-1
{"title":"Women in chemistry: Q&A with Dr Janelle Sauvageau","authors":"","doi":"10.1038/s42004-024-01277-1","DOIUrl":"10.1038/s42004-024-01277-1","url":null,"abstract":"Dr Janelle Sauvageau is a carbohydrate chemist within the Human Health Therapeutics Research Centre at the National Research Council of Canada (NRC).","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-2"},"PeriodicalIF":5.9,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01277-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142320926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Women in chemistry: Q&A with Professor Shixuan Du 化学界的女性杜诗璇教授问答
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-19 DOI: 10.1038/s42004-024-01292-2
{"title":"Women in chemistry: Q&A with Professor Shixuan Du","authors":"","doi":"10.1038/s42004-024-01292-2","DOIUrl":"10.1038/s42004-024-01292-2","url":null,"abstract":"Shixuan Du is a Professor at the Institute of Physics, Chinese Academy of Sciences, in China. Shixuan’s research focuses on the interface properties and assembly mechanism of molecules on substrates, and the design of novel low-dimensional materials by using first-principle computational methods based on density functional theory as the main research tools.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-1"},"PeriodicalIF":5.9,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01292-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142273315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new electrolyte for molten carbonate decarbonization 用于熔融碳酸盐脱碳的新型电解质
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-18 DOI: 10.1038/s42004-024-01306-z
Gad Licht, Kyle Hofstetter, Xirui Wang, Stuart Licht
{"title":"A new electrolyte for molten carbonate decarbonization","authors":"Gad Licht, Kyle Hofstetter, Xirui Wang, Stuart Licht","doi":"10.1038/s42004-024-01306-z","DOIUrl":"10.1038/s42004-024-01306-z","url":null,"abstract":"The molten Li2CO3 transformation of CO2 to oxygen and graphene nanocarbons (GNCs), such as carbon nanotubes, is a large scale process of CO2 removal to mitigate climate change. Sustainability benefits include the stability and storage of the products, and the GNC product value is an incentive for carbon removal. However, high Li2CO3 cost and its competitive use as the primary raw material for EV batteries are obstacles. Common alternative alkali or alkali earth carbonates are ineffective substitutes due to impure GNC products or high energy limitations. A new decarbonization chemistry utilizing a majority of SrCO3 is investigated. SrCO3 is much more abundant, and an order of magnitude less expensive, than Li2CO3. The equivalent affinities of SrCO3 and Li2CO3 for absorbing and releasing CO2 are demonstrated to be comparable, and are unlike all the other alkali and alkali earth carbonates. The temperature domain in which the CO2 transformation to GNCs can be effective is <800 °C. Although the solidus temperature of SrCO3 is 1494 °C, it is remarkably soluble in Li2CO3 at temperatures less than 800 °C, and the electrolysis energy is low. High purity CNTs are synthesized from CO2 respectively in SrCO3 based electrolytes containing 30% or less Li2CO3. The transformation of CO2 to oxygen and graphene nanocarbons using lithium carbonate as an electrolyte is a promising, large-scale process for CO2 removal and valorization, but lithium carbonate is already in high demand as an important battery material. Here, the authors report the use of strontium carbonate as an alternative electrolyte in the electrochemical reduction of CO2 to carbon nanotubes.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-17"},"PeriodicalIF":5.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01306-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Donor-only substituted benzene achieves thermally activated delayed fluorescence 只有供体取代的苯实现热激活延迟荧光
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-18 DOI: 10.1038/s42004-024-01301-4
Masashi Mamada, Sawako Yada, Masahiro Hayakawa, Ryota Uchida, Hiroshi Katagiri, Takuji Hatakeyama, Chihaya Adachi
{"title":"Donor-only substituted benzene achieves thermally activated delayed fluorescence","authors":"Masashi Mamada, Sawako Yada, Masahiro Hayakawa, Ryota Uchida, Hiroshi Katagiri, Takuji Hatakeyama, Chihaya Adachi","doi":"10.1038/s42004-024-01301-4","DOIUrl":"10.1038/s42004-024-01301-4","url":null,"abstract":"Thermally activated delayed fluorescence (TADF) is a promising mechanism for harvesting triplet excitons in organic light-emitting diodes (OLEDs). The donor–acceptor (D–A) design is the most conventional strategy for developing efficient TADF emitters. A subsequently emerged approach, known as the multiple resonance (MR) effect, also employs electron-donating and electron-withdrawing functional groups. Thus, developing TADF materials has traditionally relied on ingenuity in selecting and combining two functional units. Here, we have realized a TADF molecule by utilizing only a carbazole donor moiety. This molecule is an unusual example in the family of TADF materials and offers better insight into the electronic structures in the excited states for luminescent materials. Thermally activated delayed fluorescence (TADF) is a promising mechanism for harvesting triplet excitons in organic light-emitting diodes, but TADF molecules typically rely on multiple functional units, such as both an electron donor and an electron acceptor. Here, the authors develop a TADF molecule using only benzene and carbazole donor moieties.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-6"},"PeriodicalIF":5.9,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01301-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142250276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Short-lived calcium carbonate precursors observed in situ via Bullet-dynamic nuclear polarization 通过子弹动力核偏振原位观测到的短寿命碳酸钙前体
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-17 DOI: 10.1038/s42004-024-01300-5
Ertan Turhan, Masoud Minaei, Pooja Narwal, Benno Meier, Karel Kouřil, Dennis Kurzbach
{"title":"Short-lived calcium carbonate precursors observed in situ via Bullet-dynamic nuclear polarization","authors":"Ertan Turhan, Masoud Minaei, Pooja Narwal, Benno Meier, Karel Kouřil, Dennis Kurzbach","doi":"10.1038/s42004-024-01300-5","DOIUrl":"10.1038/s42004-024-01300-5","url":null,"abstract":"The discovery of (meta)stable pre-nucleation species (PNS) challenges the established nucleation-and-growth paradigm. While stable PNS with long lifetimes are readily accessible experimentally, identifying and characterizing early-stage intermediates with short lifetimes remains challenging. We demonstrate that species with lifetimes ≪ 5 s can be characterized by nuclear magnetic resonance spectroscopy when boosted by ‘Bullet’ dynamic nuclear polarization (Bullet-DNP). We investigate the previously elusive early-stage prenucleation of calcium carbonates in the highly supersaturated concentration regime, characterizing species that form within milliseconds after the encounter of calcium and carbonate ions and show that ionic pre-nucleation species not only govern the solidification of calcium carbonates at weak oversaturation but also initiate rapid precipitation events at high concentrations. Such, we report a transient co-existence of two PNS with distinct molecular sizes and different compositions. This methodological advance may open new possibilities for studying and exploiting carbonate-based material formation in unexplored parts of the phase space. Identifying and characterizing early-stage pre-nucleation species intermediates with short lifetimes remains challenging. Here, the authors study early-stage prenucleation of calcium carbonates from highly supersaturated solutions and characterize species with lifetimes below 5 seconds via ‘Bullet’ dynamic nuclear polarization NMR spectroscopy.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-6"},"PeriodicalIF":5.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01300-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Polymorphism of pyrene on compression to 35 GPa in a diamond anvil cell 芘在金刚石砧室中压缩至 35 GPa 时的多态性
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-17 DOI: 10.1038/s42004-024-01294-0
Wenju Zhou, Yuqing Yin, Dominique Laniel, Andrey Aslandukov, Elena Bykova, Anna Pakhomova, Michael Hanfland, Tomasz Poreba, Mohamed Mezouar, Leonid Dubrovinsky, Natalia Dubrovinskaia
{"title":"Polymorphism of pyrene on compression to 35 GPa in a diamond anvil cell","authors":"Wenju Zhou, Yuqing Yin, Dominique Laniel, Andrey Aslandukov, Elena Bykova, Anna Pakhomova, Michael Hanfland, Tomasz Poreba, Mohamed Mezouar, Leonid Dubrovinsky, Natalia Dubrovinskaia","doi":"10.1038/s42004-024-01294-0","DOIUrl":"10.1038/s42004-024-01294-0","url":null,"abstract":"Structural studies of pyrene have been limited to below 2 GPa. Here, we report on investigations of pyrene up to ~35 GPa using in situ single-crystal synchrotron X-ray diffraction in diamond anvil cells and ab initio calculations. They reveal the phase transitions from pyrene-I to pyrene-II (0.7 GPa), and to the previously unreported pyrene-IV (2.7 GPa), and pyrene-V (7.3 GPa). The structure and bonding analysis shows that gradual compression results in continuous compaction of molecular packing, eventually leading to curvature of molecules, which has never been observed before. Large organic molecules exhibit unexpectedly high conformational flexibility preserving pyrene-V up to 35 GPa. Ab initio calculations suggest that the phases we found are thermodynamically metastable compared to pyrene-III previously reported at 0.3 and 0.5 GPa. Our study contributes to the fundamental understanding of the polymorphism of polycyclic aromatic hydrocarbons and calls for further theoretical exploration of their structure–property relationships. Structural studies of pyrene, a polycyclic aromatic hydrocarbon, have so far been limited to below 2 GPa. Here, studying the crystal structure of pyrene up to ~35 GPa using in situ single-crystal synchrotron X-ray diffraction in diamond anvil cells, the authors discover two previously unobserved polymorphs, and find that gradual compression results in continuous compaction of molecular packing, eventually leading to a curvature of the molecules.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-12"},"PeriodicalIF":5.9,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01294-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets 致癌 p53 触发 p63 和 p73 液滴的淀粉样聚集
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-16 DOI: 10.1038/s42004-024-01289-x
Elaine C. Petronilho, Guilherme C. de Andrade, Gileno dos S. de Sousa, Fernando P. Almeida, Michelle F. Mota, Ana Vitória dos S. Gomes, Carlos Henrique S. Pinheiro, Mylena C. da Silva, Hiam R. S. Arruda, Mayra A. Marques, Tuane C. R. G. Vieira, Guilherme A. P. de Oliveira, Jerson L. Silva
{"title":"Oncogenic p53 triggers amyloid aggregation of p63 and p73 liquid droplets","authors":"Elaine C. Petronilho, Guilherme C. de Andrade, Gileno dos S. de Sousa, Fernando P. Almeida, Michelle F. Mota, Ana Vitória dos S. Gomes, Carlos Henrique S. Pinheiro, Mylena C. da Silva, Hiam R. S. Arruda, Mayra A. Marques, Tuane C. R. G. Vieira, Guilherme A. P. de Oliveira, Jerson L. Silva","doi":"10.1038/s42004-024-01289-x","DOIUrl":"10.1038/s42004-024-01289-x","url":null,"abstract":"P53 Phase separation is crucial towards amyloid aggregation and p63 and p73 have enhanced expression in tumors. This study examines the phase behaviors of p53, p63, and p73. Here we show that unlike the DNA-binding domain of p53 (p53C), the p63C and p73C undergo phase separation, but do not form amyloids under physiological temperatures. Wild-type and mutant p53C form droplets at 4°C and aggregates at 37 °C with amyloid properties. Mutant p53C promotes amyloid-like states in p63C and p73C, recruiting them into membraneless organelles. Amyloid conversion is supported by thioflavin T and Congo red binding, increased light scattering, and circular dichroism. Full-length mutant p53 and p63C (or p73C) co-transfection shows reduced fluorescence recovery after photobleaching. Heparin inhibits the prion-like aggregation of p63C and p73C induced by p53C. These findings highlight the role of p53 in initiating amyloid aggregation in p63 and p73, opening avenues for targeting prion-like conversion in cancer therapy. Phase separation of p53 is crucial in its progression towards amyloid aggregation, while its paralogous forms p63 and p73 have enhanced expression in tumors but reduced aggregation propensity. Here, the authors report the prion-like aggregation of p63 and p73 mediated by p53 and outline that this process can be inhibited by heparin.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-15"},"PeriodicalIF":5.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01289-x.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeted sulfur(VI) fluoride exchange-mediated covalent modification of a tyrosine residue in the catalytic pocket of tyrosyl-DNA phosphodiesterase 1 以氟化硫(VI)交换为介导,对酪氨酸-DNA 磷酸二酯酶 1 催化口袋中的一个酪氨酸残基进行靶向共价修饰
IF 5.9 2区 化学
Communications Chemistry Pub Date : 2024-09-16 DOI: 10.1038/s42004-024-01298-w
Xue Zhi Zhao, Idris A. Barakat, George T. Lountos, Wenjie Wang, Keli Agama, Md Rasel Al Mahmud, Kiall F. Suazo, Thorkell Andresson, Yves Pommier, Terrence R. Burke Jr.
{"title":"Targeted sulfur(VI) fluoride exchange-mediated covalent modification of a tyrosine residue in the catalytic pocket of tyrosyl-DNA phosphodiesterase 1","authors":"Xue Zhi Zhao, Idris A. Barakat, George T. Lountos, Wenjie Wang, Keli Agama, Md Rasel Al Mahmud, Kiall F. Suazo, Thorkell Andresson, Yves Pommier, Terrence R. Burke Jr.","doi":"10.1038/s42004-024-01298-w","DOIUrl":"10.1038/s42004-024-01298-w","url":null,"abstract":"Developing effective inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) has been challenging because of the enzyme shallow catalytic pocket and non-specific substrate binding interactions. Recently, we discovered a quinolone-binding hot spot in TDP1’s active site proximal to the evolutionary conserved Y204 and F259 residues that position DNA. Sulfur (VI) fluoride exchange (SuFEx) is a biocompatible click chemistry reaction that enables acylation of protein residues, including tyrosine. Selective protein modifications can provide insights into the biological roles of proteins and inform ligand design. As we report herein, we used SuFEx chemistries to prepare covalent TDP1-bound binders showing site-specific covalent bonds with Y204. Our work presents the first application of SuFEx chemistries to TDP1 ligands. It validates the ability to covalently modify specific TDP1 residues by designed targeting and adds to the chemical biology resource toolbox for studying TDP1. Developing effective inhibitors of the DNA repair enzyme tyrosyl-DNA phosphodiesterase 1 (TDP1) is challenging because of the enzyme’s shallow catalytic pocket and non-specific substrate binding interactions. Here, the authors use Sulfur (VI) fluoride exchange chemistries to prepare covalent TDP1-bound binders showing site-specific covalent bonds with the Y204 residue that position DNA.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-13"},"PeriodicalIF":5.9,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01298-w.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信