Ke Ji, Elizabeth K Pack, Caden Maydew, Kevin A Alberto, Sameera Abeyrathna, Rhiza Lyne E Villones, Humera Gull, Gabriele Meloni, Steven O Nielsen, Sheel C Dodani
{"title":"肉葡萄球菌可溶性硝酸盐传感器NreA阴离子结合混杂性的探讨。","authors":"Ke Ji, Elizabeth K Pack, Caden Maydew, Kevin A Alberto, Sameera Abeyrathna, Rhiza Lyne E Villones, Humera Gull, Gabriele Meloni, Steven O Nielsen, Sheel C Dodani","doi":"10.1038/s42004-025-01660-6","DOIUrl":null,"url":null,"abstract":"<p><p>Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process. Further deconvolution of the association and dissociation kinetics for each anion reveals that the release event can be limiting, in turn, giving rise to the observed selectivity: nitrate > iodide > nitrite. These conclusions are supplemented with molecular dynamics simulations that capture an entry and exit pathway coupled to subtle global protein motions unique to each anion. Taken together, our data point to how structural plasticity of the binding pocket controls the relative promiscuity of ScNreA to guarantee physiological nitrate sensing.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"275"},"PeriodicalIF":6.2000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423327/pdf/","citationCount":"0","resultStr":"{\"title\":\"Probing the anion binding promiscuity of the soluble nitrate sensor NreA from Staphylococcus carnosus.\",\"authors\":\"Ke Ji, Elizabeth K Pack, Caden Maydew, Kevin A Alberto, Sameera Abeyrathna, Rhiza Lyne E Villones, Humera Gull, Gabriele Meloni, Steven O Nielsen, Sheel C Dodani\",\"doi\":\"10.1038/s42004-025-01660-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process. Further deconvolution of the association and dissociation kinetics for each anion reveals that the release event can be limiting, in turn, giving rise to the observed selectivity: nitrate > iodide > nitrite. These conclusions are supplemented with molecular dynamics simulations that capture an entry and exit pathway coupled to subtle global protein motions unique to each anion. Taken together, our data point to how structural plasticity of the binding pocket controls the relative promiscuity of ScNreA to guarantee physiological nitrate sensing.</p>\",\"PeriodicalId\":10529,\"journal\":{\"name\":\"Communications Chemistry\",\"volume\":\"8 1\",\"pages\":\"275\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12423327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1038/s42004-025-01660-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01660-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Probing the anion binding promiscuity of the soluble nitrate sensor NreA from Staphylococcus carnosus.
Promiscuity, or selectivity on a spectrum, is an encoded feature in biomolecular anion recognition. To unravel the molecular drivers of promiscuous anion recognition, we have employed a comprehensive approach - spanning experiment and theory - with the Staphylococcus carnosus nitrate regulatory element A (ScNreA) as a model. Thermodynamic analysis reveals that ScNreA complexation with native nitrate and nitrite or non-native iodide is an exothermic process. Further deconvolution of the association and dissociation kinetics for each anion reveals that the release event can be limiting, in turn, giving rise to the observed selectivity: nitrate > iodide > nitrite. These conclusions are supplemented with molecular dynamics simulations that capture an entry and exit pathway coupled to subtle global protein motions unique to each anion. Taken together, our data point to how structural plasticity of the binding pocket controls the relative promiscuity of ScNreA to guarantee physiological nitrate sensing.
期刊介绍:
Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.